Environmental Impact Statement/Environment Effects Statement

Appendix O

Ceomorphology and geology

Marinus Link

Terrestrial Geomorphology and Geology impact assessment

Environmental GeoSurveys Pty Ltd

MARINUS LINK

Terrestrial Geomorphology and Geology impact assessment

May 2024

PREPARED BY

PREPARED FOR

Environmental GeoSurveys Pty Ltd

Tetra Tech Coffey Pty Ltd Level 11, 2 Riverside Quay, Southbank VIC 3006 Australia p: +61 3 9290 7000 f: +61 3 9290 7499 ABN 55 139 460 521

QUALITY INFORMATION

Revision history

Revision	Description	Date	Author	Reviewer	Approver
Rev0	Final	16/05/2024	NR	KW	NR

Restriction on Disclosure and Use of Data

This technical report has been prepared by Environmental GeoSurveys (EGS) for the exclusive use of the client (Tetra Tech Coffey Pty Ltd) for specific application to Marinus Link in Victoria.

The report is largely a desktop study of Marinus Link in Victoria. This technical report relies on information provided by the proponent and from other publicly available sources. The data represents the physical conditions of the site within limits of relevance, scale, resolution, and temporal currency.

Subject to the exercise of professional judgment and except as expressly described herein, we have not attempted to verify independently the completeness, accuracy, or fair presentation of any of the information presented.

EXECUTIVE SUMMARY

Tetra Tech Coffey Pty Ltd (Tetra Tech Coffey) engaged Environmental GeoSurveys Pty Ltd (EGS) to complete a terrestrial geomorphology and soils conditions report of Marinus Link (the project).

The project is a proposed 1500-megawatt (MW) HVDC electricity interconnector between Heybridge in northwest Tasmania and the Latrobe Valley in Victoria. The portion of the alignment covered in this assessment is the Waratah Bay shore crossing from mean low water mark to the Hazelwood converter station in Victoria. A specific assessment for the Heybridge converter station and shore crossing is provided in a separate technical report.

The scope of the geomorphology and soils study was primarily to:

- To describe the physical (geoscience) character of the area that could be affected by the project, including geology, landforms, soils.
- Identify and assess potential residual effects of the project on soil stability, erosion and exposure of hazardous soils due to changed geographic conditions introduced by the project.
- Identify measures to avoid or minimise project impacts on the physical (geoscience) environment. The study area is the 20-36 m wide construction corridor and broader enclosing survey area 220 m wide.

It must be noted that this is a desktop study only and no field inspection of the project alignment was undertaken to inform the assessment. The technical report draws on information from a geomorphology and soils descriptive report (Environmental GeoSurveys 2019). That study – a vehicle-based and limited walkover reconnaissance field inspection from public roads and other public access areas over 4.5 days in November 2018 – included part of the project alignment.

This geomorphology study relies on proponent-provided LiDAR Digital Elevation Model (DEM) captured in 2021 with 0.5 m vertical resolution and high resolution digital vertical aerial photography supplemented by open-source spatial information on topography, geology, hydrology and soils. The 2.2 km gap in the supplied LiDAR at the Waratah Bay shore crossing and backshore was supplemented by older (2007) LiDAR from a private source. Gaps in the supplied photography totalling 8.6 km were filled with imagery from Google Earth.

The information derived from the remote data and literature review was sufficient to define the fundamental physical baseline characteristics of the project alignment at a generalised scale as discrete areas of landscape. The discrete areas are recognised by their geomorphic attributes including physical properties of landforms, geology, soils and geomorphological process that contributes to shaping the ground surface and shallow sub-surface. Nine geomorphic attributes are identified across the study area, each attribute with a defined range of physical properties. These do not necessarily represent engineering properties, such as excavatability, which will be dealt with by geotechnical investigations and assessments by other studies. The geomorphic attributes were used to define a hierarchy of geomorphological units as the basis for description of existing conditions and impact assessment. The project was divided into fourteen initial, broad geomorphic domains, each domain with a limited range of elevation, slope form and stream density and with one geologically dominant type. Geomorphology of the study area includes active and relict coastal dunes and low backshore tidal terrain, floodplain and alluvial and colluvial terraces, as well as undulating to strongly dissected hills and low plateaus surfaces developed on weathered Mesozoic sedimentary rocks overlain by deeply weathered Cenozoic volcanic rocks and sediments.

A number of stream channels will be crossed by the project alignment including the upper reaches of tributaries and the deep valley of the Tarwin River East Branch and the floodplain and terraces of Morwell River. The hilly terrain has evidence of slope movements including probable active landslides and areas of slope instability crossed by the project corridor.

Previous field-based studies (Sargeant and Imhoff 2013) had recognised soil-landform units in south Gippsland based on associations of specific landforms and soils and other environmental variables, notably

climate and drainage pattern. Sixty-nine soil-landform units occur along the project alignment. Soil landform units have been used in to provide a second tier of landscape delineation for this study.

The project area has been assessed by identifying discrete geomorphic divisions along the alignment. These divisions are called trench sectors and are defined by a combination of soil-landform units, geology, and geomorphic processes. A change in geomorphic attributes determines the boundary of a trench sector. The trench sectors provide high resolution recognition of changes in key landforms within the broader soil-landform units. A total of 192 trench sectors was recognised, comprising 183 along the main terrestrial alignment of the project, three at the Waratah Bay shore crossing, four at the offtake to the Driffield and Hazelwood converter stations and one for each of the converter stations. The complexity of much of the dissected landscape and the density of stream incision combined with geological units gave rise to the high number of trench sectors recognised. This number must be regarded as minimal as it is based on desk study only. It is likely that a field study will distinguish geomorphic features and processes that cannot be recognised from remote data.

Baseline geomorphic attributes are sensitive to varying degrees to potential impacts from the project. Sensitivity is a function of slope steepness, surface materials, evidence of slope instability and potential response to exposure on excavation and loading by materials and machinery. The sensitivity of each geomorphic attribute was assessed for the project for each of the 192 trench sectors. The sensitivity of each geomorphic attribute was determined on a five-fold scale: not sensitive, not very sensitive, sensitive, very sensitive and extremely sensitive. The ratings for the individual attributes were then combined to give an overall sensitivity of each trench sector on the same scale. The magnitude of impact of the project on each trench sector was then defined on a scale: severe, major, moderate, minor, and negligible. Combining the sensitivity of the sector with the magnitude of impact gave a rating of significance of the impact of the project on each trench sector on a scale of major, high, moderate, low, and very low. These are raw scores without applying any mitigation techniques on the project activities. The initial assessment undertaken without any mitigation measures produced 36 major impacts, 34 high impacts, 117 moderate impacts, three low impacts.

Environmental performance requirements (EPRs) were then developed and applied to the activities of the project for each trench sector. EPRs set out the environmental outcomes that must be achieved during design, construction, operation and decommissioning of the project. They do not provide prescriptive measures that must be employed but provide a framework to allow MLPL and its contractors to determine the best way to manage impacts by developing and optimising design and construction and operation solutions. Applying EPRs reduced the residual significance of impact to be 0 major residual impacts, 13 high residual impacts, 69 moderate residual impacts and 108 low residual impacts.

Site investigation by a geomorphologist (including collection of sub-surface cores down to at least trench/HDD depth to determine stratigraphy) of the 13 sectors of high residual impact is recommended to inform project design, including choice of construction methods. If site investigation reveals that ground conditions are unsuitable for construction or construction activities might impact slope stability or existing or potential landslides (i.e., geomorphic stability cannot be assured through design and application of EPRs), realignment is recommended in those sectors.

It was concluded that the engineering activities of the project without mitigation has the potential for major, high, and moderate impact on much of the terrain which it must be noted has a number of significantly sensitive geomorphic attributes. This residual impact can be reduced and managed to varying degrees by applying appropriate design, construction and operational strategies.

CONTENTS

1.	INTRODUCTION1		
	1.1	Purpose of this report	1
	1.2	Project overview	2
	1.3	Assessment context	4
2.	ASSE	ESSMENT GUIDELINES	5
	2.1	Commonwealth	5
	2.2	Tasmania	5
	2.3	Victoria	5
		2.3.1 EES evaluation objective	5
		2.3.2 EES scoping requirements	5
	2.4	Linkages to other technical studies	6
	2.5	Commonwealth legislation	6
	2.6	Victorian legislation	7
	2.7	Policy and guidelines	7
3.	PRO	JECT DESCRIPTION	8
	3.1	Overview	8
	3.2	Study area	9
	3.3	Waterway crossing construction	.11
	3.4	Joint pits and cable construction	.11
	3.5	Operation	.12
	3.6	Converter and transition stations	.12
		3.6.1 Hazelwood converter station	.12
		3.6.2 Driffield converter station	.12
		3.6.3 Waratah Bay transition station	.12
	3.7	Decommissioning	.12
4.	ASSE	ESSMENT METHOD	.14
	4.1	Study components	.14
	4.2	Desktop study	.14
		4.2.1 Data sources	.14
		4.2.2 Baseline characterisation	.15
		4.2.3 Geomorphic attributes	.15
	4.3	Impact assessment process	.16
		4.3.1 Introduction	.16
		4.3.2 Potential impacts	.16

Marinus Link

		4.3.3 Initial impact assessment method	17
		4.3.4 Geomorphic attributes	17
		4.3.5 Sensitivity of geomorphic attributes	17
		4.3.6 Magnitude of impact	19
		4.3.7 Significance of impact	19
	4.4	Cumulative impact assessment	20
	4.5	Assumptions and limitations	21
5.	EXIS	TING CONDITIONS	23
	5.1	Context	23
		5.1.1 Geomorphological assets: landforms, geology, regolith, soil	23
		5.1.2 Geomorphological processes	24
		5.1.3 Human impacts	25
		5.1.4 Physiography	27
		5.1.5 Slope instability	29
		5.1.6 Shore crossing	32
	5.2	Geology	33
	5.3	Regolith and depth to bedrock	36
	5.4	Geomorphology	36
		5.4.1 Geomorphic domains	36
		5.4.2 Soil-landform units	46
		5.4.3 Trench sectors	50
	5.5	Geoheritage	50
6.	IMPA	ACT ASSESSMENT	51
	6.1	Mechanisms causing impacts	51
		6.1.1 Potential impacts	51
		6.1.2 Actual impacts	52
	6.2	Significance of impact assessment	52
		6.2.1 Unmitigated significance of impact for trench sectors	52
		6.2.2 Environmental performance requirements (EPRs)	52
		6.2.3 Assessment of residual impact	55
		6.2.4 Residual significance of impact for trench sectors	56
		6.2.5 Explanation of residual significance of impact assessment	56
		6.2.6 Significance of impact assessment for shore crossing and other infrastructure	73
	6.3	Discussion of significance of impact assessment	74
7.	CON	CLUSION	77

8.	REFERENCES	'8
-		-

LIST OF TABLES

Table 2-1	EES scoping requirements relevant to geomorphology and soils	6
Table 2-2	Linkages to other technical studies	6
Table 4-1	Key data sources	14
Table 4-2	Geomorphic attributes	15
Table 4-3	Sensitivity criteria of geomorphic attributes	17
Table 4-4	Magnitude of impact definitions	19
Table 4-5	Interpretation of significance of impact	19
Table 4-6	Significance of impact assessment matrix	20
Table 5-1	Types of slope instability: Trench sectors and approximate chainage	30
Table 5-2	Geomorphic domains along proposed Victorian land project alignment	38
Table 6-1	Environmental performance requirements	53
Table 6-2	Reasons for reductions in significance of impact across 58 trench sectors	57
Table 6-3	Reasons for retaining high residual significance of impact across 13 trench sectors	58
Table 6-4	Summary of significance of impact assessment for trench sectors - unmitigated and mitigate	ed by
	application of EPRs	60
Table 6-5	Summary of significance of impact assessment for shore crossing sectors - unmitigated and	b
	mitigated by application of EPRs	73
Table 6-6	Driffield Converter Station: Summary of significance of impact assessment for trench sectors	s and
	overall converter station site - unmitigated and mitigated by application of EPRs	74
Table 6-7	Hazelwood Converter Station: Summary of significance of impact – unmitigated and mitigate	ed by
	application of EPRs	74
Table 6-8	Unmitigated significance of impact	76
Table 6-9	Residual significance of impact	76

LIST OF FIGURES

Figure 1-1	Project overview (Source: Tetra Tech Coffey)	3
Figure 3-1	Project components considered under applicable jurisdictions (Marinus Link Pty Ltd 2022,	
	Consultation Plan)	9
Figure 3-2	Location of Marinus Link, Victoria (Base: 10 metre State-wide DEM, Landata Vic)	10
Figure 5-1	Definitions and uses of terminology for soil and regolith in different disciplines	24
Figure 5-2	Ecological vegetation class maps of changes in vegetation in south Gippsland 1750-2005 (pos	st-
-	European occupation). The main tree vegetation units along Marinus Link (Heathy Woodlands	S,
	Lowland Forests, and Wet or Damp Forests) are outlined in the legend (Source: Community	
	Bushfire Connection)	26
Figure 5-3	Physiography, faults. Profile (vertical exaggeration x 12) shows Marinus Link alignment	27
Figure 5-4	Earthquakes in SE Australia (1970-2014) in relation to Marinus Link Victoria terrestrial alignme	ent
-	(base map from McCue 2015).	28
Figure 5-5	Location of trench sectors with desktop recognition of unmitigated significance of impact of	
-	landslides, slope instability and channel-gully head instability	31
Figure 5-6	Channel instability (S9), landslide (S11), slope instability (S12) (Base LiDAR DEM)	32
Figure 5-7	Geological zones (From Seamless Geology 2014)	35
Figure 5-8	Geomorphic domains (Base 10 m state-wide DEM, Landata Vic)	37
Figure 5-9	Location of geomorphic units GD1 to GD3 (Base: LiDAR DEM, aerial photograph, and soil-	
-	landform units transparent overlay)	41

Figure 5-10	Location of geomorphic units GD4 to GD5 (Base: LiDAR DEM, aerial photograph, and soil- landform units transparent overlay)	.42
Figure 5-11	Location of geomorphic units GD6 and GD7 (Base: LiDAR DEM, aerial photograph, and soil- landform units transparent overlay)	.43
Figure 5-12	Location of geomorphic units GD8 to GD9 (Base: LiDAR DEM, aerial photograph, and soil- landform units transparent overlay)	.44
Figure 5-13	Location of geomorphic units GD10 to GD11 (Base: LiDAR DEM, aerial photograph, and soil- landform units transparent overlay)	.45
Figure 5-14	Location of geomorphic units GD12 to GD14 (Base: LiDAR DEM, aerial photograph, and soil- landform units transparent overlay)	.46
Figure 5-15	Soil-landform units (Sargeant and Imhof 2003)	.47
Figure 6-1	Unmitigated and residual significance of impact on geomorphology and soils (Base: World Imagery 2018)	.72

LIST OF PLATES

Plate 5-1	Waratah Bay beach and scarped foredune near the proposed Marinus Link shore crossin	
	Rosengren 09 November 2018)	33

APPENDICES

APPENDIX A: SIGNIFICANCE OF IMPACT ASSESSMENT DETAILS

APPENDIX B: IMPACT MAPS

APPENDIX C: UNMITIGATED MAJOR AND HIGH SIGNIFICANCE OF IMPACT MAPS

APPENDIX D: RESIDUAL HIGH SIGNIFICANCE OF IMPACT MAPS

APPENDIX E: MARINUS SITES OF SIGNIFICANCE REPORT

ACRONYMS/ABBREVIATIONS

Acronyms/Abbreviations	Definition
AHD	Australian Height Datum
ASS	acid sulfate soil
DEM	Digital Elevation Model. A 3-dimensional representation of the ground surface (bare earth) excluding vegetation and built structures such as buildings, towers and power lines. It does include human-made piles or rock or earth such as embankments and spoil heaps.
DSM	Digital Surface Model. A 3-dimensional representation of the Earth's surface, including vegetation, and human-made objects elevated above the "bare earth".
DTM	Digital Terrain Model. In this report a DTM is synonymous with a DEM.
HDD	horizontal directional drilling
HVAC	high voltage alternating current
HVDC	high voltage direct current
Lidar	Light Detection and Ranging. The use of pulsed laser from an aerial vehicle to detect and measure distances to objects below. Topographic LiDAR typically uses a near- infrared laser to map the land, while bathymetric LiDAR uses water-penetrating green light to also measure seafloor and riverbed elevations.
PASS	potential acid sulfate soil

1. INTRODUCTION

The proposed Marinus Link (the project) comprises a high voltage direct current (HVDC) electricity interconnector between Tasmania and Victoria, to allow for the continued trading and distribution of electricity within the National Electricity Market (NEM).

The project was referred to the Australian Minister for the Environment 5 October 2021. On 4 November 2021, a delegate of the Minister for the Environment determined that the proposed action is a controlled action as it has the potential to have a significant impact on the environment and requires assessment and approval under the *Environment Protection and Biodiversity Conservation Act 1999* (Cwlth) (EPBC Act) before it can proceed. The delegate determined that the appropriate level of assessment under the EPBC Act is an environmental impact statement (EIS).

On 12 December 2021, the former Victorian Minister for Planning under the *Environment Effects Act 1978* (Vic) (EE Act) determined that the project requires an environment effects statement (EES) under the EE Act, to describe the project's effects on the environment to inform statutory decision making.

In July 2022, a delegate of the Director of the Environment Protection Authority Tasmania determined that the project be subject to environmental impact assessment by the Board of the Environment Protection Authority (the Board) under the *Environmental Management and Pollution Control Act 1994* (Tas) (EMPCA).

As the project is proposed to be located within three jurisdictions, the Victorian Department of Transport and Planning (DTP), Tasmanian Environment Protection Authority (Tasmanian EPA) and Australian Department of Climate Change, Energy, Environment and Water (DCCEEW) have agreed to coordinate the administration and documentation of the three assessment processes. One EIS/EES is being prepared to address the requirements of DTP and DCCEEW. Two EISs are being prepared to address the Tasmanian EPA requirements for the Heybridge converter station and shore crossing.

This report has been prepared by Environmental GeoSurveys Pty Ltd for the Victorian and Commonwealth jurisdictions as part of the EIS/EES being prepared for the project.

1.1 PURPOSE OF THIS REPORT

This study covers terrestrial geomorphology and soils of the Marinus Link underground electricity interconnector and associated converter station and shore crossing In Gippsland, Victoria. It builds on previous desk and field studies undertaken for Coffey during 2018 and 2019 by Environmental GeoSurveys.

The objectives of this technical study are to:

- Describe the physical (geoscience) character of the study area that could be affected by the project.
- Characterise the soil types and structures and identify the potential location and disturbance of dispersive, acid sulfate, saline, or soils of other special characteristics that could affect or be affected by the project.
- Identify and assess potential effects on coastal landforms and environments, including changes as a result of the project, and the potential for disturbance of saline, dispersive or acid sulfate soils, and including appropriate consideration of possible cumulative effects.
- Identify and assess potential residual effects of the project on soil stability, erosion, and the exposure of hazardous soils (e.g., acid sulfate soils).
- Identify and assess potential effects on nearby and downstream environments due to changed geomorphic conditions.
- Identify measures to avoid or minimise project (works and operational) impacts, including potential and proposed design options and measures that could avoid or minimise significant effects on soil stability,

and contingency measures for responding to unexpected but foreseeable impacts such as disturbance of acid sulfate soils.

An integrated approach to determining initial potential and unmitigated impacts is used by combining a range of physical and process attributes determined by this study and using data from available associated geotechnical studies Jacobs 2019, 2021, 2022a, 2022b, 2022c, 2023a, 2023b.

This was then followed by an assessment of the residual significance of impacts through the utilisation of EPRs.

1.2 PROJECT OVERVIEW

The project is a proposed 1500 megawatt (MW) HVDC electricity interconnector between Heybridge in northwest Tasmania and the Latrobe Valley in Victoria (Figure 1-1). The project is proposed to provide a second link between the Tasmanian renewable energy resources and the Victorian electricity grids enabling efficient energy trade, transmission and distribution from a diverse range of generation sources to where it is most needed, and will increase energy capacity and security across the NEM.

Marinus Link Pty Ltd (MLPL) is the proponent for the project and is a wholly owned subsidiary of Tasmanian Networks Pty Ltd (TasNetworks). TasNetworks is owned by the State of Tasmania and owns, operates and maintains the electricity transmission and distribution network in Tasmania.

Tasmania has significant renewable energy resource potential, particularly hydroelectric power and wind energy. The potential size of the resource exceeds both the Tasmanian demand and the capacity of the existing Basslink interconnector between Tasmania and Victoria. The growth in renewable energy generation in mainland states and territories participating in the NEM, coupled with the retiring of baseload coal-fired generators, is reducing the availability of dispatchable generation that is available on demand.

Tasmania's existing and potential renewable resources are a valuable source of dispatchable generation that could benefit electricity supply in the NEM. The project will allow for the continued trading, transmission and distribution of electricity within the NEM. It will also manage the risk to Tasmania of a single interconnector across Bass Strait and complement existing and future interconnectors on mainland Australia. The project is expected to facilitate the reduction in greenhouse gas emissions at a state and national level.

Interconnectors are a key feature of the future energy landscape. They allow power to flow between different regions to enable the efficient transfer of electricity from renewable energy zones to where the electricity is needed. Interconnectors can increase the resilience of the NEM and make energy more secure, affordable and sustainable for customers. Interconnectors are common around the world including in Australia. They play a critical role in supporting Australia's transition to a clean energy future.

HYDRO_R01215878ML_HYDRO_R01_FIGS_BAPRX LAYOUT215878ML_HYDRO_F01-1_GIS_1 SISWXD_APRX/215878ML PROJECTMARINUS/TASI ASNETWORKS S772\S\GIS\215878_MELEN DOC REFERENCE: WTT.LOCA

1.3 ASSESSMENT CONTEXT

As Cooke and Doornkamp (1990 p. 11) noted "Geomorphology can provide an understanding of the nature of landscapes sufficient for engineering work to be carried out safely, predictably and economically within them". Impact assessments of a particular project must be based on prior identification of the existing geomorphological systems and land units, determination of their descriptive parameters and evaluation of the morphological features relevant to recognition of values and identification of existing hazards and those that may be introduced by the activities of the proposed land use change (Cavallin *et al.* 1994).

The geomorphology and soils assessment of this technical report contributes to understanding the nature of the morphology, materials, and processes of landforms as a basis for assessing potential constraints on – and the response of the environment to – the proposed activities required to build, operate, maintain, and decommission the project. The project will involve construction activities in a variety of surface, subsurface and subaqueous (marine and non-marine) environments comprised of diverse physical materials formed and modified by a range of past and presently active processes. The project activities will alter the appearance and dynamics of landforms to varied degrees from total to minimal.

2. ASSESSMENT GUIDELINES

This section outlines the assessment guidelines relevant to geomorphology and geology and the linkages to other EIS/EES technical studies. A single consolidated EIS/EES is being prepared to address the requirements of all the Commonwealth and Victorian jurisdictions including the requirement for an EES. This report will use the term EIS/EES going forward.

2.1 COMMONWEALTH

DCCEEW have published the following guidelines for the EIS: 'Guidelines for the Content of a Draft Environmental Impact Statement – Environment Protection and Biodiversity Conservation Act 1999 – Marinus Link underground and subsea electricity interconnector cable (EPBC 2021/9053)'.

The Commonwealth guidelines do not provide any specific scoping guidelines relevant to geomorphology, and geology.

2.2 TASMANIA

The Tasmanian component of the project is being assessed in accordance with the EIS guidelines issued by EPA Tasmania for the converter station and shore crossing (September 2022). This assessment is documented in a separate report (EGS, 2023).

2.3 VICTORIA

The EES scoping requirements issued by the Minister for Planning (February 2023) outline the specific matters to be assessed across a number of environmental and social disciplines relevant to the project, and to be documented in the EES for the project.

The EES Scoping Requirements inform the scope of the EES technical studies and define the EES evaluation objectives. The EES evaluation objectives identify the desired outcomes to be achieved and provide a framework for an integrated assessment of the environmental effects of a proposed project.

2.3.1 EES evaluation objective

The EES evaluation objective contained in Section 4.2 of the EES scoping requirements that is relevant to this geomorphology and geology assessment is:

'Avoid and, where avoidance is not possible, minimise adverse effects on land and water (including groundwater, surface water, waterway, wetland, and marine) quality, movement and availability.'

2.3.2 EES scoping requirements

The relevant sections of the EES scoping requirements that this assessment has addressed are summarised in Table 2-1. This study has addressed the aspects relevant to geomorphology and soils, and considered acid sulfate soils in the context of geology only. Contaminated land and management of acid sulfate soils is addressed in the Technical Appendix N: Contaminated land and acid sulfate soils.

Aspects to be assessed Scoping Requirement		Report Section	
Key issues	The potential for disturbance of contaminated, saline, dispersive or acid sulfate soils.	Section 4 (method); 4.1.11 (environmental performance requirements)	
Existing environment	Characterise geology, geomorphology, landforms and soils in the project area and identify potential locations where dispersive, acid sulfate, saline or potentially contaminated soils, or soils with other special characteristics that could be disturbed by the project.	Section 5 (existing conditions)	
Likely effects	Identify and assess potential effects of the project on soil stability, erosion and the exposure and disposal of contaminated or hazardous soils (e.g., acid sulfate soils).	6 (potential impacts)	
Mitigation	Describe potential and proposed design options and measures that could avoid or minimise significant effects on soil and land stability and rehabilitation.	6.2.2 (environmental performance requirements)	
Performance	Describe the framework for monitoring and evaluating the measures implemented to mitigate impacts on water, soils and landforms and contingencies.	6.2.2 (environmental performance requirements)	

Table 2-1 EES scoping requirements relevant to geomorphology and soils

2.4 LINKAGES TO OTHER TECHNICAL STUDIES

This report is informed by or informs the technical studies outlined in Table 2-2.

Table 2-2	Linkages	to other	technical	studies

Technical studies	Relevance to this assessment
Groundwater (Tetra Tech Coffey, 2023)	Technical Appendix P: Groundwater details baseline conditions and potential impacts on groundwater. Groundwater both influences and is influenced by geomorphology.
Land use and planning (Beveridge Williams, 2023)	Technical Appendix S: Land use and planning details baseline conditions and potential impacts to land uses in the context of wider planning provisions. Geomorphology is a key factor influencing land use.
Surface water (Alluvium, 2023)	Technical Appendix Q: Surface water details baseline conditions and potential impacts on surface water. Surface water both influences and is influenced by geomorphology.
Contaminated land and acid sulfate soils (Tetra Tech Coffey, 2023)	Technical Appendix N: Contaminated land and acid sulfate soils details baseline conditions and potential impacts on contaminated land and acid sulfate soils. Geomorphology influences contamination pathways and receptors.
Aboriginal and historical cultural heritage (ELA, 2023)	Technical Appendix J: Aboriginal and historical cultural heritage details baseline condition and potential impact on cultural heritage. The presence of cultural heritage artefacts often results in geomorphological units being listed as geoheritage or geoconservation sites.

2.5 COMMONWEALTH LEGISLATION

There is no Commonwealth legislation of direct relevance to geomorphology.

2.6 VICTORIAN LEGISLATION

There is no Victorian legislation of direct relevance to geomorphology.

2.7 POLICY AND GUIDELINES

The assigning and reviewing of geoheritage significance is currently undertaken in Victoria by the Geological Society of Australia Inc (Victoria Division) (GSAV), Heritage subcommittee.

3. PROJECT DESCRIPTION

3.1 OVERVIEW

The project is proposed to be implemented as two 750 megawatt (MW) circuits to meet transmission network operation requirements in Tasmania and Victoria. Each 750 MW circuit will comprise two power cables and a fibre-optic communications cable bundled together in Bass Strait and laid in a horizontal arrangement on land. The two 750 MW circuits would be installed in two stages with the western circuit being laid first as part of stage one, and the eastern cable in stage two.

The key project components for each 750 MW circuit, from south to north, are:

- HVAC switching station and HVAC-HVDC converter station at Heybridge in Tasmania. This is where the
 project will connect to the North West Tasmania transmission network being augmented and upgraded
 by the North West Transmission Developments (NWTD).
- Shore crossing in Tasmania adjacent to the converter station.
- Subsea cable across Bass Strait from Heybridge in Tasmania to Waratah Bay in Victoria.
- Shore crossing at Waratah Bay approximately 3 kilometres (km) west of Sandy Point.
- Land-sea cable joint where the subsea cables will connect to the land cables in Victoria.
- Land cables in Victoria from the land-sea joint to the converter station site in the Driffield or Hazelwood areas.
- HVAC switching station and HVAC-HVDC converter station at Driffield or at Hazelwood, where the project will connect to the existing Victorian transmission network.

A transition station at Waratah Bay may also be required if there are different cable manufactures or substantially different cable technologies adopted for the land and subsea cables. The location of the transition station will also house the fibre optic terminal station in Victoria. However, regardless of whether a transition station is needed, a fibre optic terminal station will still be required in the same location.

Approximately 255 km of subsea HVDC cable will be laid across Bass Strait. The preferred technology for the project is two 750 MW symmetrical monopoles using ±320 kV, cross-linked polyethylene insulated cables and voltage source converter technology. Each symmetrical monopole is proposed to comprise two identical size power cables and a fibre-optic communications cable bundled together. The cable bundles for each circuit will transition from approximately 300 m apart at the HDD (offshore) exit to 2 km apart in offshore waters.

In Victoria, the shore crossing is proposed to be located at Waratah Bay with the route crossing at the Waratah Bay–Shallow Inlet Coastal Reserve. From the land-sea joint located behind the coastal dunes, the land cable will extend underground for approximately 90 km to the converter station. From Waratah Bay the cable will run northwest to the Tarwin River Valley and then travel to the north to the Strzelecki Ranges. The route crosses the ranges between Dumbalk and Mirboo North before descending to the Latrobe Valley where it turns northeast to Hazelwood. The Victorian converter station will be at either a site south of Driffield or Hazelwood adjacent to the existing terminal station.

The land cables will be directly laid in trenches or installed in conduits in the trenches. A construction area of 20 to 36 m wide would be required for laying the land cables and construction of joint bays. Temporary roads for accessing the construction area and temporary laydown areas will also be required to support construction. Where possible, existing roads and tracks will be used for access, for example, farm access tracks or plantation forestry tracks.

Land cables will be installed in ducts under major roads, railways, major watercourses and substantial patches of native vegetation using trenchless construction methods (e.g., HDD), where geotechnical conditions permit. A larger area than the 36 m construction area will be required for the HDD crossings.

The assessment is focused on the Victorian section of the project. This report will inform the EIS/EES being prepared to assess the project's potential environmental effects in accordance with the legislative requirements of the Commonwealth and Victorian governments (see Figure 3-1).

The project is proposed to be constructed in two stages over approximately five years following the award of works contracts to construct the project. On this basis, stage 1 of the project is expected to be operational by 2030, with Stage 2 to follow, with final timing to be determined by market demand. The project will be designed for an operational life of at least 40 years.

3.2 STUDY AREA

The study area (as outlined in Figure 3-2 below) for this assessment is between the proposed landside shore crossing at Waratah Bay and converter station site at Hazelwood, Victoria and includes the proposed converter station site and land cable connection at Driffield.

Figure 3-2 Location of Marinus Link, Victoria (Base: 10 metre State-wide DEM, Landata Vic)

3.3 WATERWAY CROSSING CONSTRUCTION

Crossing of waterways with HDD includes:

- Access track construction to HDD drill entry and exit pads.
- Preparing hardstands at entry and exit points.
- Installing erosion and sediment controls.
- Digging entry and exit pits.
- Delivery and set up of HDD drill rig and associated equipment.
- Drilling of pilot hole under feature (e.g., waterway).
- Ream borehole to required diameter.
- Weld high density polyethylene (HDPE) duct lengths together.
- Pull duct through borehole and set with bentonite.

After construction the site is rehabilitated through:

- Removing all equipment and drill cuttings.
- Removing hardstand and reinstating/rehabilitating entry and exit pads.

3.4 JOINT PITS AND CABLE CONSTRUCTION

Land cables are supplied in standard section lengths of either 800 m or 1.2 km. For areas not required HDD, cables will be laid in trenches. The cable lengths will be joined at joint pits. Joint pits are around 12 m long, 2.5 m wide and 2.5 m deep, buried at least 0.5 m below the surface.

The key construction activities for land cables and joint pits include:

- Establishing laydown areas, site offices and amenities.
- Site establishment (site entries, gates, access, weed control, stock proof fencing, etc.).
- Topsoil stripping and stockpiling (around 300 to 400 mm in depth).
- Constructing haul roads along construction working corridors.
- HDD and duct installation at road, waterway, and third-party infrastructure crossings.

Excavation of trenches and stockpiling of subsoil – trenches to be a nominal width of 1 m and typical depth of greater than 1.2 m to the top of the duct from ground level.

- Installation of ducts and thermal backfill where required.
- Backfilling trenches with subsoil and topsoil and reinstatement except at cable joint pits and where equipment required to assist cable installation, e.g., at bends and HDD crossings.
- Construction (in-situ) or installation (pre-cast modules) of cable joint pits.
- Pulling of cables through ducts.
- Cable jointing.
- Backfilling and reinstatement of cable installation and cable joint pit workspaces.

Cable joint pits will be constructed in-situ or prefabricated using precast concrete modules and brought to site for installation. The area to accommodate the cable joint pit and associated works including jointing will be topsoil stripped. The joint bay itself will be excavated and suitable drainage installed to prevent moisture ingress during the works. All spoil will be separated and stockpiled on the construction working corridor.

3.5 OPERATION

The project will ideally be operational 24 hours a day, 365 days per year over a minimum lifespan of 40 years. Operational and maintenance activities in the Victoria land portion of the Marinus Link are likely to include:

- Routine inspection across the easement for operational and maintenance issues.
- Servicing, testing and repair of the land cables, transition station and converter stations equipment and infrastructure including scheduled minor and major outages.
- Maintenance of access tracks.

In general, maintenance requirements for land cables are minimal with routine maintenance being limited to a number of smaller activities around the jointing pits. These activities will be sheathing tests every five years involving two workers for one day at each joint bay. They will have a standard 4WD vehicle and use handheld testing equipment. A route drive over will also occur around once a fortnight to ensure that no unknown construction activities or non-permitted activities are occurring above the cables.

Easement conditions on title will set out restrictions on activities on the easement. Most farming and cropping activities can continue. No buildings or trees will be allowed on the easement.

3.6 CONVERTER AND TRANSITION STATIONS

The study area also includes the area enclosing two proposed HVAC-HVDC converter stations and one transition station in Victoria.

3.6.1 Hazelwood converter station

The Hazelwood converter station comprises an area of approximately 17 hectares and consists of a HVAC-HVDC converter station and expansion of the Hazelwood Terminal Station in Victoria where the project will connect to the existing Victorian transmission network.

3.6.2 Driffield converter station

An alternative converter station site to the south of Driffield comprising an area of approximately 96.5 hectares has also been included in the study area.

3.6.3 Waratah Bay transition station

The shore crossing at Waratah Bay is approximately 3 km west of Sandy Point. Here, the subsea cables will connect to the land cables in Victoria, with a fibre optic terminal station.

3.7 DECOMMISSIONING

The operational lifespan of the project is a minimum 40 years. At this time the project will be either decommissioned or upgraded to extend its operational lifespan.

Decommissioning will be planned and carried out in accordance with regulatory and landowner or land manager requirements at the time. A decommissioning management plan will be prepared prior to planned end of service and decommissioning of the project.

Requirements at the time will determine the scope of decommissioning activities and impacts. The key objective of decommissioning is to leave a safe, stable and non-polluting environment, and minimise impacts during the removal of infrastructure.

In the event that the project is decommissioned, all above-ground infrastructure will be removed, and associated land returned to the previous land use or as agreed with the landowner or land manager.

Decommissioning activities required to meet the objective will include, as a minimum, removal of above ground buildings and structures. Remediation of any contamination and reinstatement and rehabilitation of the site will be undertaken to provide a self-supporting landform suitable for the end land use.

Decommissioning and demolition of project infrastructure will implement the waste management hierarchy principles being avoid, minimise, reuse, recycle and appropriately dispose. Waste management will accord with applicable legislation at the time.

Decommissioning activities may include recovery of land and subsea cables and removal of land cable joint pits. Recovery of land cables will involve opening the cable joint pits and pulling the land cables out of the conduits, spooling them onto cable drums and transporting them to metal recyclers for recovery of component materials. The conduits and shore crossing ducts will be left in-situ as removal will cause significant environmental impact.

The concrete cable joint pits will be broken down to at least one metre below ground level and buried in-situ or excavated and removed. Subsea cables will be recovered by water jetting or removal of rock mattresses or armouring to free the cables from the seabed.

A decommissioning management plan will be prepared to outline how activities will be undertaken and potential impacts managed.

For the purposes of this geomorphology and soils technical report, it has been assumed that cables will remain in the ground and decommissioning impacts are not further considered.

4. ASSESSMENT METHOD

4.1 STUDY COMPONENTS

This technical report has two key components:

(A) a desktop study characterisation of the geology, geomorphology, geomorphic processes, and soils of the project areas in Victoria.

(B) an assessment of the potential impact of the project on geology, geomorphology, geomorphic processes, and soils.

4.2 DESKTOP STUDY

The material provided by Tetra Tech Coffey and MLPL supplemented by topographic and other relevant physical data and literature was sufficient to characterise the geomorphology and geomorphic processes of the study area and identify generalised potential impacts of the proposal on the physical landscape. The study area was initially divided into generalised units based on key characteristics of geology (geological zones), geomorphology (geomorphic domains) and soil-landform units. The soil-landform units were further divided along the main alignment into trench sectors (discrete lengths of trench) based on a variety of geomorphic form and processes. A total of 183 terrestrial trench sectors were identified, plus three additional trench sectors at the shore crossing and four additional trench sectors at the Driffield converter station connection site.

4.2.1 Data sources

Digital files showing the easement and buffer of the study corridor and existing and a preliminary alignment of proposed access tracks needed for construction and maintenance were supplied. Information regarding physical landscape components (topography, geology, hydrology, geoconservation sites, vegetation) and cultural features (infrastructure, cadastral and planning) was obtained via digital data sets. A key data source for geomorphology and slopes was a LiDAR-derived digital terrain model [DTM] with 0.5 m vertical resolution.

The key data sources are listed in Table 4-1.

Application	Data sources			
Overview	Aerial photography (client-supplied), Google Earth			
Geology	Geological Survey of Victoria Seamless Geology 1:250,000 (2014), published and unpublished Parish Plans			
Soil	1:100,000 Soil-landform Units Foster and Moe mapsheets			
Topography	Project LiDAR 2021 (client-supplied), State-wide DEM 10 metre. State-wide 10 metre contour lines. LiDAR tiles: coastal (2008, 2011)			
Geomorphology	Victorian Geomorphic Framework, 1:100,000 Soil-landform Units Foster and Moe mapsheets			
Hydrology	Datasets Landata Vic: hydrographic areas, hydrographic lines, wetlands			
Coastal	Smartline			

4.2.2 Baseline characterisation

Baseline characteristics are the fundamental physical components of discrete areas of landscape recognised by their geomorphic attributes described below. They are comprised of geomorphological assets – landforms, geology, regolith, and soils – and geomorphological processes. The combined assets and processes constitute geomorphic attributes across the study area.

4.2.3 Geomorphic attributes

A geomorphic attribute is a physical property of landform or a geomorphic process that contributes to shaping the ground surface and shallow sub-surface of the study areas. The geomorphology of a discrete area is determined by combining geological and topographical information and inferred or recognised geomorphic processes. This produces landform areas with components described by geomorphological terminology commonly used in Australia (Grimes 1995).

The spatial unit that is the base for geomorphic description and impact assessment is a trench sector. Trench sectors range in length from 35 metres to several hundred metres.

Nine geomorphic attributes are identified across all the study area and outlined in Table 4-2. Single attributes or groups of attributes define the spatial extent of a discrete geomorphic unit. The attributes are then generalised and grouped to a degree to facilitate assessment of impacts of the project. Specific attributes that apply to the shore crossing—coastal erosion, coastal recession, and coastal inundation with sea-level rise, are assessed separately for the shore crossing section of the alignment.

The attribute properties are recognised based on their geomorphological characteristics. They do not necessarily represent engineering properties relating to for example excavatability and trench stability which will be dealt with under geotechnical investigations such as ground conditions assessment reports by other investigators.

Geomorphic attribute no.	Geomorphic attribute	Definition
1	Relief and slope	Relative relief (range of elevation), maximum ground slope angle and shape.
2	Stability of Landform / Slope instability, landslides	Propensity of a surface to change by downslope movement of rock or soil without the direct aid of other media such as water or ice. Water is often important as a lubricant or loading on slope mass. Instability is determined by inherent properties such as slope, lithology, fractures, geological boundaries, depth of regolith and geomorphic processes and may be triggered by engineering or other anthropic activity.
3	Erosivity (hillslopes), slope wash, sheet wash, rilling and tunnel erosion	Propensity of a surface to change because of water-driven process such as slope wash, sheet wash, rilling and tunnel erosion
4	Hydrology, surface flows, waterlogging	Potential for run-on and run-off from precipitation, thaw, groundwater outcrop. Related to slope angle and form.
5	Riverine flood / inundation	Inundation from overbank flows.
6	Regolith	Stratigraphy of the substrate, such as thickness of soil and weathered rock, depth to rock, inclusion of cemented layers, swell-shrink potential and possibility of variations as they relate to trenching construction.
7	Soft soils	Geomorphic assessment of soil composition and ability to sustain loading and influence stability.
8	Acid sulfate soil	Actual and potential for acid sulfate development.
9	Geoheritage	Natural geoscience values worthy of conservation.

Table 4-2 Geomorphic attributes

4.3 IMPACT ASSESSMENT PROCESS

4.3.1 Introduction

The potential initial impacts of the project on the geomorphology and soils were determined by combining the inherent sensitivity of each of the nine attributes described in Table 4-2 with the potential magnitude of impact of the project activities. The attributes and magnitude of impacts were combined using a matrix to produce a resultant significance of impact.

The sensitivity of each of the nine geomorphic attributes was determined on a five-fold scale (Table 4-3) for each trench sector. These are combined to produce an overall sensitivity rating for each trench sector. The rationale for assigning overall sensitivity is detailed for each trench sector. The magnitude of each impact and the significance of impact from project activities was then determined for each trench sector also on a five-part scale (Table 4-4). The initial significance of impact documented in this technical report assumes no mitigation of the potential impacts. Subsequent to the development and finalisation of EPRs, an assessment of the residual significance of impact was completed for this report.

4.3.2 Potential impacts

Potential impacts on geomorphic properties and processes can occur due to project activities including excavation, backfill, trenching and construction of hard standing (e.g., concrete pads for the converter stations) and buildings during construction and operation across the project area.

These include:

- Modification to relief and slope to facilitate tracks, laydowns and other building infrastructure requiring a level surface upon which to be constructed.
- Construction of the trench can alter slope stability through loading, spoil management and backfilling changing surface and sub-surface flows.
- The entry point of HDD at the shore crossing can cause instability of the seabed and changes to sediment pathways.
- Slope instability and changes to surface and groundwater pathways as a result of construction.
- Entry and exit HDD points at all terrestrial locations can change groundwater levels and pathways and have direct and indirect impact on surface features through changing vegetation and associated landforms.
- The removal of vegetation and the exposure of subsoils on tracks and site cuts may increase the potential for erosion and off-site sediment transport to the environment (including creeks and waterways) especially in susceptible ground conditions.
- The construction of trenching and tracks across watercourses may alter surface flows if not carefully designed. Redirection of water around infrastructure may also alter flow direction.
- Increase in hard stand surfaces may increase the volume of surface flows and collection and concentration of water may cause waterlogging, erosion and has potential to cause harm to receiving environments through increased flow and sediment transport.
- The excavation and backfill of the trench replaces regolith and soil with material of potentially different physical and hydraulic properties with potential impact on slope stability, foundation capacity and surface and subsurface flows.
- The project activities can expose and potentially activate acid sulfate soils.

4.3.3 Initial impact assessment method

Initial impact assessment was made for each of the 192 project trench sectors (comprising three shore crossing sectors, 183 main alignment sectors, four sectors for the offtake to the converter stations and one each for Driffield and Hazelwood) on a five-fold rating scale from very low to major. The impact rating was derived from a matrix combining the sensitivity of each geomorphic attribute within the sector and the magnitude of change associated with the project.

4.3.4 Geomorphic attributes

The nine geomorphic attributes are identified and defined in Section 4.2.3 and Table 4-2 above. All geomorphic attributes have been identified in each trench sector.

4.3.5 Sensitivity of geomorphic attributes

Sensitivity is the potential response, susceptibility, or vulnerability of a geomorphic attribute to disturbance occasioned by the construction and operation of the project. Sensitivity is related to the inherent characteristics of an attribute as expressed by the sensitivity rating in Table 4-3. The majority of the attributes are broadly evident and clearly recognisable in a desktop study. Regolith and soil properties are less evident and the rationale for the sensitivity rating for these attributes for the purposes of this report is defined as follows:

- Sensitivity of regolith is determined largely by thickness, i.e., high sensitivity when it is minimal thickness or has significant properties such as shrink-swell.
- The sensitivity of soil properties relates to the thickness and consolidated nature of soil horizons.

The sensitivity of each attribute in each geomorphic area was assessed to determine the overall sensitivity of each trench sector. The overall sensitivity for each sector was determined based on professional judgement and additional expert advice (Jacobs 2021, 2022a, 2022b, 2022c, 2023a) having regard to the attributes which most contribute to sensitivity in that sector.

Attribute	Sensitivity rating						
	Not sensitive	Not very sensitive	Sensitive	Very sensitive	Extremely sensitive		
Relief and slope	Level ground and requires no cut and fill for construction or access roads (slopes $0 - 1^{\circ}$)	Gently inclined slopes around 2.6 m relief (slopes 1º – 6º)	Moderately inclined slopes with 8.5 m (slopes 6 – 18°)	Steeply inclined slopes with approx. 25 m relief (slopes $18^{\circ} - 30^{\circ}$)	Very steep to precipitous / cliffed (slopes >30°)		
Stability of Landforms	No evidence of instability in geological units not noted for landslides/rockfalls. Not close to landslide/rockfall susceptible features i.e., break of slope or geological boundaries.	No evidence of instability but geomorphic features (i.e., slope and form) suggest they may be possible under suitable trigger conditions.	Showing some signs of instability and with evidence of landslide activity in other areas of similar geology and slope.	Evidence from DEM of past landslides of unknown age and activity.	Mapped landslides of recent activity.		
Erosivity (hillslopes), slope wash,	Level slopes with minimal vegetation removal or where	Gentle slopes, permeable non- dispersive soils.	Moderately inclined slopes	Steep slopes with susceptible	Where slopes are steep to very steep with minimal		

 Table 4-3
 Sensitivity criteria of geomorphic attributes

Attribute	Sensitivity rating					
	Not sensitive	Not very sensitive	Sensitive	Very sensitive	Extremely sensitive	
sheet wash, rilling and tunnel erosion	rock and non- dispersive soils exist.		with vegetation removal.	soils and long run-on runoffs.	infiltration and no surface storage. Composed of highly dispersible soils. Removal of vegetation may cause significant changes to run-on and runoff.	
Hydrology, surface flow, waterlogging	Level and minimal slope terrain. Not waterlogged.	Gently inclined slopes around 2.6 m relief. Minimal upslope and downslope relief. Some waterlogging.	Moderate slopes with no drainage lines but potential flow paths to defined water courses. Frequently waterlogged.	Steeply inclined slopes with steep upslope and downslope run-on and runoff. Long periods of waterlogging.	Landscape with well-defined or declared watercourses and drainage lines. Complete and irreversible change to micro morphology. High groundwater levels.	
Riverine Flood	Elevation and terrain beyond overbank flows.	Elevation and terrain allow minimal chance of reach by overbank flow.	At margins of floodplain and some chance of episodic inundation.	On floodplain with evidence of recurrent inundation.	On floodplain or channel experiencing frequent and sustained inundation.	
Regolith	Not applicable.	Probable deep soil profile based on geology and soil landform unit information, and/or low potential for swell shrink.	Possible variation in soil profile which may contain rock floaters, very dense to hard soils, shallow weathered rock, and/or moderate swell shrink potential.	Probable shallow soil profile / or high swell shrink potential.	No regolith (rock exposure or artificial surface and sub-surface).	
Soil Properties	Strongly consolidated deposits.	Variably consolidated deposits.	Weakly consolidated.	Very poorly consolidated.	Very soft unconsolidated, saturated.	
ASS / PASS	No ASS or PASS detected. No causative factors noted.	Extremely Low with a probability of 1 – 5% of occurrence.	Low with a probability of 6 – 70% of occurrence.	High with a probability of >70% of occurrence.	High with a probability of >70% of occurrence.	
Geoheritage	Not listed, no significant features recognised.	Local significance.	Regional significance.	State to national significance.	International (global) significance.	

The overall sensitivity for a trench sector is based on the array of sensitivity of each of the key attribute(s) and differs between trench sectors as determined by the geomorphology. In some trench sectors, the sensitivity of some attributes can be high, but they may have minor interaction with the key components of the development. This relationship is defined by the magnitude of impact of the project and the significance of impact as explained in Section 4.3.6 and Section 4.3.7 below.

4.3.6 Magnitude of impact

The magnitude of impacts on the geomorphic attributes for each trench sector was determined using the definitions in the five-fold scale negligible to severe set out in Table 4-4.

Table 4-4	Magnitude	of impact	definitions
-----------	-----------	-----------	-------------

Magnitude	Definition
Severe	An impact that causes very significant permanent changes to a geomorphic area and irreversible harm to the geomorphic attributes. The impact may extend well beyond the project operational areas to surrounding land causing downstream and / or upslope impacts on supported environmental values.
Major	An impact that causes significant long-term change to a geomorphic area affecting multiple geomorphic attributes and supported environmental values downstream or upslope of the area. There is potential for some recovery of the geomorphic attributes over time with site specific remediation. The impact extends beyond the project operational area.
Moderate	An impact that causes moderate medium-term changes to a geomorphic area affecting one or more geomorphic attributes and associated and adjacent supported environmental values. The effect may extend beyond but is generally contained within the project operational area and can be addressed with standard remediation.
Minor	A localised short-term impact within the project operational area. The effects can be mitigated through standard environmental management controls.
Negligible	A localised impact that is temporary and does not extend beyond the project operational area. The impact does not affect the project operational area or land adjacent and supported environmental values. The effects can be managed with standard environmental management controls.

4.3.7 Significance of impact

The significance of impact is rated on a five-fold scale from very low to major as defined in Table 4-5.

Significance	Definition
Major	The change is permanent with a number of geomorphic attributes substantially altered. The effects may extend well beyond the project operational area. Impacts will continue if substantial remediation is not implemented. Very difficult to reinstate affected geomorphic attributes and supported environmental values.
High	The change may be long-term or permanent for some geomorphic attributes and the effects extend beyond the project operational area. Substantial remediation is required to reinstate some affected geomorphic attributes and supported environmental values.
Moderate	The change is potentially medium-term generally contained within the project area. Remediation is required to avoid further degradation. Geomorphic attributes can be reinstated with standard mitigation.
Low	The change is localised (within the project operational area) and effectively remediated with standard mitigation. The geomorphic attributes are unlikely to change over time.
Very low	The change is minimal and localised within the project operational area and effectively managed with standard mitigation. The geomorphic attributes and supported environmental values are not expected to change over time.

 Table 4-5
 Interpretation of significance of impact

Significance of impacts on geomorphic values was determined using a five-by-five matrix that evaluates the combinations of sensitivity and magnitude. The matrix adopted for this study is shown in Table 4-6.

Magnitude of impact	Sensitivity of geomorphic sector				
	Extremely Sensitive	Very Sensitive	Sensitive	Not Very Sensitive	Non-Sensitive
Severe	Major	Major	Major	High	Moderate
Major	Major	Major	High	Moderate	Low
Moderate	High	High	Moderate	Low	Low
Minor	Moderate	Moderate	Low	Low	Low
Negligible	Moderate	Low	Low	Low	Very low

Table 4-6 Significance of impact assessment matrix

4.4 CUMULATIVE IMPACT ASSESSMENT

The EIS guidelines and EES scoping requirements both include requirements for the assessment of cumulative impacts. Cumulative impacts result from incremental impacts caused by multiple projects occurring at similar times and within proximity to each other.

To identify possible projects that could result in cumulative impacts, the International Finance Corporation (IFC) guidelines on cumulative impacts have been adopted. The IFC guidelines (IFC, 2013) define cumulative impacts as those that 'result from the successive, incremental, and/or combined effects of an action, project, or activity when added to other existing, planned, and/or reasonably anticipated future ones.'

The approach for identifying projects for assessment of cumulative impacts considers:

- Temporal boundary: the timing of the relative construction, operation and decommissioning of other existing developments and/or approved developments that coincides (partially or entirely) with the project
- Spatial boundary: the location, scale and nature of the other approved or committed projects expected to occur in the same area of influence as Marinus Link. The area of influence is defined as the spatial extent of the impacts a project is expected to have.

Proposed and reasonably foreseeable projects were identified based on their potential to credibly contribute to cumulative impacts due to their temporal and spatial boundaries. Projects were identified based on publicly available information at the time of assessment. The projects considered for cumulative impact assessment in Victoria are:

- Delburn Wind farm
- Star of the South Offshore Wind farm
- Offshore wind development zone in Gippsland including Greater Gippsland Offshore Wind Project (BlueFloat Energy), Seadragon Project (Floatation Energy), Greater Eastern Offshore Wind (Corio Generation).
- Hazelwood Rehabilitation Project
- Wooreen Energy Storage System

Cumulative impacts associated with geomorphology and soils were not considered to be relevant to this assessment due to the localised nature of the impacts of this project and the geographically constrained boundaries of the other projects listed above.

No significant cumulative intra-project or interproject effects on geomorphology and soils were identified.

4.5 ASSUMPTIONS AND LIMITATIONS

This technical report describes the geomorphology and soils of the study area incorporating other physical attributes that determine landscape and dynamics of the project area. The key geomorphic attributes including geomorphic processes are described in Section 5.1.2. The attribute properties are recognised on the basis of their geomorphological characteristics; they do not necessarily represent specific engineering properties relating to, for example, excavatability and trench stability.

The report draws on information from a preliminary vehicle-based and limited walkover reconnaissance field inspection from public roads and other public access areas for a previous geomorphology and soils descriptive report (Environmental GeoSurveys 2019). While providing useful geographic background, that study is of limited value for the specific details of impact assessment required for the present technical report, as much of the route across private land has not been sighted.

It is important to note that proponent-supplied LiDAR data and aerial photography were captured in early 2021 and do not necessarily represent the current (December 2022) conditions. The factual geotechnical and ground conditions investigation reports (Jacobs 2019, 2021, 2022a, 2022b) available at time of writing this report covered only part of the Marinus project area.

The Ground Condition Assessment (Jacobs 2021) is a desktop study. The Ground Conditions Factual Report Tranche 1 (Jacobs 2022a) covers only the northern part route. The Driffield Ground Investigation Geotechnical Interpretive Report (Jacobs August 2022c) provides specific details only of the proposed Driffield converter station. The Jacobs reports available for this report cover only part of the study area —as stated para 3 p. 21—and were used where relevant.

Access tracks to the construction corridor have not been assessed as part of the geomorphology scope because although they are required for the project, the preferred option is to use existing tracks and to upgrade these if necessary. In some instances, existing tracks will need to be extended from their current location to the construction corridor. The construction process by which existing access tracks will be extended involves laying geotextile mat and covering this with crushed rock, to be removed after construction (unless the landowner requests it to be retained). As construction of new access tracks to the construction corridor will not involve geomorphically sensitive activities such as topsoil stripping, installing drains and excavation or trenching, and because of the temporary nature of the access tracks, minimal impacts are anticipated.

Potential geomorphic impacts of the project during construction, operation and decommissioning are considered in Section 6 and formalised into two detailed tables of assessment – one for initial impact and one for residual impact assessment Appendix A: (Spreadsheet). A summary of this table showing unmitigated and residual impacts is shown as Table 6-4. Potential impacts have been developed by assessing the particular The project's activity and the sensitivity of the attributes of the trench sector derived from the interpretation of images and literature.

The landscape properties described in this technical report are recognised on the basis of their geomorphological characteristics. They do not necessarily represent engineering properties relating to, for example, excavatability and trench stability, which will be dealt with under geotechnical investigations such as field-based ground conditions assessment reports by other investigators.

Assessment of geoheritage nature and sensitivity for the technical report was conducted by the Geological Society of Australia (Victorian Division) Geoheritage Subcommittee chair (Dr. Susan White) and her recommendations have been adopted in full.

The significance of impact of the construction and operation of the project on geomorphology and soils as documented in this technical report is in two parts. The first assessment of impact was made on the assumption no mitigating measures were applied. A set of EPRs was then developed and applied to each component of the project and a second assessment made to develop a residual impact.

Geomorphic instability in its most extreme form might result in events including land slips, landslides and subsidence. The consequences of land movement has not be assessed in this technical report, the focus of this assessment is the impact of project activities on land stability and geomorphic units.

5. EXISTING CONDITIONS

5.1 CONTEXT

This section describes the existing physical conditions of the project based on the sources documented in Section 4.2.1 above.

Landforms are comprised of two classes of component values (Rivas et al. 1997):

- (a) Geomorphological assets.
- (b) Geomorphological processes.

5.1.1 Geomorphological assets: landforms, geology, regolith, soil

Geomorphological assets are the geometric forms and materials that comprise landforms and are used directly as a resource by humans or form essential support for other ecosystems. Sand and gravel deposits in active river channels are consumable geomorphic assets. When quarried for construction materials they are depleted in the short term but become a renewable resource when replenished by ongoing fluvial processes. The same materials stranded as high terraces above a defined flood level are a non-renewable material resource when extracted. They also serve as a static or stable asset if used as a building site because of they reduce flood risk. This use is compatible with maintaining the integrity of the landform but may compromise its asset value in other ways e.g., as habitat, geoheritage value or visual landscape element.

Geomorphological assets are composite features composed of landforms, bedrock, surficial geology, regolith, and soil as defined below.

Landforms: Landforms are the physical framework on which the project will be constructed and operated. This framework is an assemblage of shapes (slopes) underlain by primary geological materials formed and modified over varied time periods producing regolith and soil.

Geology: Geology is the underlying material of landforms. Geological materials vary in composition, structure and mechanical strength and range from bedrock – composed of coherent resistant primary mineral material to highly modified unconsolidated disaggregated bodies of low strength referred to as regolith or soil. The character of a geological rock unit may vary vertically and laterally depending on a wide range of environmental factors. Landforms may directly or indirectly reflect these variations expressed as land surface elevation and slope and resistance to change by geomorphic processes.

Surficial Geology: Surficial geology has two meanings:

- (a) geologically young sedimentary and volcanic bodies overlying bedrock.
- (b) a zone of weathered materials with derived and residual minerals and variable content of organics, air, and water developed on rocks of any age or origin referred to as regolith by geomorphologists and soil by geotechnical engineers.

Regolith: Geomorphological literature since the 1980s typically replaces the term surficial geology with regolith. Regolith at a site is the composition and structure of the surface and subsurface materials extending to the base of the weathering zone and is comprised of two groups of materials:

In situ weathered rock formed by the mechanical and chemical breakdown of bedrock by interaction with atmospheric processes and organisms.

Transported rock products derived from other sites and deposited as sediments overlying bedrock and existing in situ regolith by slope, fluvial and aeolian processes.

Several generations of regolith may occur in a vertical section at a site. In terrain of complex geology and slopes, regolith type and thickness can vary considerably. The nature, thickness, and geotechnical properties of all regolith is a factor in assessing constraints and impacts of building and maintaining the converter station and shore crossing HDD tunnels.

Soil: The term has different meanings in different disciplines (as noted in the surficial geology description above and summarized in Figure 5-1 below. Soil thickness – a measure of the A and B soil pedological horizons is relevant for biological establishment and restoration of disturbed ground. However, it is only one component in assessing ground stability for construction as the more relevant properties are thickness of regolith (in situ and transported) and depth to and strength of bedrock.

ENGINEERING GEOLOGIST	ENGINEER	GEOMORP	HOLOGIST	PEDOLOGIST	NOTES 1.The terms used gade into each other	
	Topsoil		Topsoil	A horizon	vertically. 2. Topsoil includes organic material in the A horizon. 3. Regolith is loose to variably cemented material above bedrock and includes the topsoil or solum and unconsolidated transported sediment (see note 7 below). 4. Bedrock is effectively unaltered by weathering. 5. WG refers to Weathering Grade in six values: WG1 = Unweathered, WG2 = Slightly, WG3 = Moderately, WG4 = Highly, WG5= Completely, WG6 = Residual Soil. 5. Solum is the A and B horizons of a pedological soil. 6. Saprolite is <i>in situ</i> weathered bedrock in which the oroiginal rock structures may be preserved althouigh the material properties are of a soil in engineering terms. 7. Superficial (or surficial) deposits are unconsolidated material of Cenozoic age covering bedrock, including residual soils and transported sediment.	
Residual Soil (WG VI & V) Soil and	Soil / Overburden	Saprolite	REGOLITH	Subsoil		
weathered rock (WG IV) Weathered rock and soil (WG III)				C horizon		
Effectively fresh rock (WG I & II)	Bedrock	Rock		Rock		

Figure 5-1 Definitions and uses of terminology for soil and regolith in different disciplines

5.1.2 Geomorphological processes

Landforms originate by the interaction of existing earth materials with geological and geomorphological processes and the mechanisms and rates by which land surfaces change has long been the focus of geomorphological research. Geomorphological processes operate at a range of spatial and temporal scales and energy levels. No surface or sub-surface landform is inert over geological time, but on millennial time scales geomorphological environments can be broadly classed on a continuum from passive to active. Passive environments are those where the geomorphological asset e.g., a discrete area of land is essentially static over some defined time scale e.g., the projected life of a proposed construction activity.

The driving forces of geomorphic processes are of four general origins: endogenic – produced inside Earth and expressed at the surface as tectonic (earthquakes), and volcanic activity; exogenic – produced above the surface and manifest as the climate-driven processes (e.g., rivers) of Earth's atmosphere; biogenic – the role of plants and animals (including humans) in creating and modifying materials, landforms and processes; extra-terrestrial events such as meteorite impacts.

A background constant is the force of gravity that effectively drives the downslope movement of water, snow, ice, and earth materials. Slow lateral migration of a stream channel and gradual removal of basal slope material can generate a landslide. Irregular high energy events such as earthquakes, storm runoff and tsunami have direct geomorphic impact and may also be triggering mechanisms for gravity-driven movements.

5.1.3 Human impacts

The impact of human activity as a geomorphological process is local to global in extent and magnitude (Goudie 1990). Stone, gravel, and sand quarrying is a human activity with direct and obvious impact. More difficult to recognise and measure are delayed and secondary human impacts on soil and land surface stability such as removal and replacement of vegetation, reshaping land surfaces by cultivation, stream diversion and water storage, wetland draining and groundwater withdrawal.

The impact of Aboriginal people on the geomorphology of the project area is not known but will have been uneven and concentrated on the plains and coast. The forests of the Strzelecki ranges were less commonly used as they were wetter and supported less abundant food resources (Wedrowicz et al. 2017, Slotnick 2022). The main impact of Aboriginal people would have been by managed fire but episodic large uncontrolled fire from human and other causes would have occurred as experienced over the period of European occupation. European occupation beginning in the 1850's rapidly imposed substantive change, initially by removing almost all forest cover (Figure 5-2 Ecological vegetation class maps of changes in vegetation in south Gippsland 1750-2005 (post-European occupation). The main tree vegetation units along Marinus Link (Heathy Woodlands, Lowland Forests, and Wet or Damp Forests) are outlined in the legend (Source: Community Bushfire Connection).Figure 5-2) exposing soils on steep slopes and substantially altering surface and groundwater hydrology.

Figure 5-2 Ecological vegetation class maps of changes in vegetation in south Gippsland 1750-2005 (post-European occupation). The main tree vegetation units along Marinus Link (Heathy Woodlands, Lowland Forests, and Wet or Damp Forests) are outlined in the legend (Source: Community Bushfire Connection).

These changes may be a significant factor in contributing to the widespread slope instability in south Gippsland recorded since the early 1900's, decades after the original clearance (Brumley 1978, Webb et al. 2003). Landslides and other slope instability issues along the project are described in 5.1.5 below. While most of the project is inland, a shore crossing is required. Coastal processes including erosion, inundation and related geomorphic changes at the crossing site as a consequence of sea-level rise over the project life are relevant, and additional geomorphic attributes to account for these conditions are presented as a separate sensitivity assessment. The project is assuming between 59 and 61 cm of sea level rise by 2090 (Katestone 2023).

5.1.4 Physiography

West and south Gippsland has a complex tectonic and geomorphic history with varied drainage patterns reflecting the control of geology (lithology) and tectonics (Figure 5-3).

NNE-SSW aligned faulting has divided South Gippsland into tectonic blocks that show varied dissection related to the underlying geology. Close-spaced drainage lines with narrow interfluves and high relief occur in the Lower Cretaceous volcaniclastic rocks where deep weathering and the absence of repeated thick resistant beds reduces structural control of landform. By comparison, areas with an extensive remnant cover of Thorpdale Volcanics basalt have widely spaced valleys, broad planar divides, and fewer short tributary streams. This drainage pattern may be a function of the nature of the pre-volcanic terrain, the original emplacement thickness of the lavas and the subsequent tectonic history.

The orientation of the major valleys of South Gippsland shows strong influence of faulting. Stream capture has been a factor in producing some anomalous drainage directions such as the Tarwin River East Branch initially flowing south-north and turning 180 degrees at Mirboo to be north-south (Figure 5-3).

The southern half of the project area is low elevation. The terrain rises abruptly at the Tarwin Fault defining the alignment of the Tarwin River East Branch.

Palaeozoic basement rocks overlain by sequences of Mesozoic mainly sedimentary rocks several kilometres thick were covered by widespread lava flows and younger marine and non-marine deposits of limestone, coal, and gravel. Ongoing tectonic activity has compressed, folded, faulted and uplifted these rocks producing distinct the large fault bounded Narracan Block, Tarwin Block and Balook Block and Gelliondale Block (Figure 5-3). The faults strike NNE-SSW and define the margins of the blocks, both as fault scarps and deeply eroded valleys such as the Tarwin River East Branch and West Branch. Uplift is ongoing as evidenced by the high seismicity (Figure 5-4).

5.1.5 Slope instability

Relatively high rainfall and deep regolith has facilitated mass movement processes as evidenced by the numerous landslides identified by Jacobs (2021, 2022a) and the present surveys. As outlined above, major changes in local geomorphic regimes have been experienced over the period of European occupation associated with the removal of forest cover, including loss of topsoil increased incidence of landslides and incision of drainage lines that were formerly chain-of-ponds waterways.

Mass movement is facilitated also by the interface between deeply weathered basalt and the underlying prebasaltic surface, that also in places has a deep weathering profile.

This is a geomorphologically active and dynamic landscape indicated by landslides and other forms of slope instability identified from LiDAR and aerial photography at 44 trench sectors (Table 5-1, Figure 5-5, Appendix B:).

The following definitions have been used in this assessment.

Landslide – Existing:

Clearly defined and recognisable landslide through which the alignment passes. Showing strong geomorphic features and either previously mapped by Jacobs (2021, 2022a, 2022b, 2023a) or recognised in this study.

Landslide – Existing Adjacent:

Clearly defined and recognised landslide adjacent to and in close proximity to the alignment.

Possible Landslide:

A less well defined but coherent geomorphic feature interpreted as a possible and/or older feature displaying more subtle landslide features.

Slope Instability:

An area showing clear evidence of minor to moderate slope failures, shallow surficial slope failures, undulations, hummocks, creep, and shallow ground disturbance, through which the alignment passes.

Possible Slope Instability:

An area with less clear but some evidence of minor to moderate slope failures, shallow surficial slope failures, undulations, hummocks, creep, and shallow ground disturbance, through which the alignment passes.

Channel Slope Instability:

Steep to very steep slopes/banks along channels and have potential for failure under further disturbance. The alignment crosses such watercourses and will encounter these steep slopes on both sides of the crossing.

Trench Sector	Approx. Chainage	Instability Type	Trench Sector	Approx. Chainage	Instability type
S9	4680	channel-slope instability	S89	50650	landslide-existing
S11	5050	landslide-existing	S91	51250	slope instability
S12	5250	slope instability	S93	52100	slope instability
S15	7200	slope instability	S94	52150	channel-slope instability
S16	7400	slope instability	S95	52180	slope instability
S20	9400	slope instability	S102	53400	slope instability
S23	14460	channel-slope instability	S104	53450	slope instability
S31	19150	channel-slope instability	S114	55100	landslide-existing
S38	28500	channel-slope instability	S115	55200	slope instability
S51	38100	slope instability	S116	56200	landslide-existing
S60	44400	slope instability	S117	56600	landslide-existing
S63	45200	slope instability	S118	57100	possible degraded landslide
S64	45500	landslide-existing	S122	61050	gully head instability adjacent
S68	46200	slope instability	S123	61500	possible slope instability
S69	46500	landslide-existing	S124	61560	channel-slope instability
S70	46900	slope instability	S125	61700	landslide-existing
S75	47900	landslide-existing	S132	66930	landslide-existing
S79	48600	landslide-existing	S148	74800	possible slope instability
S81	49300	landslide-existing	S152	75500	possible landslide
S82	49380	channel-slope instability	S154	76000	possible landslide
S83	49500	landslide-adjacent	S158	73370	possible slope instability
S85	50250	landslide-existing	S166	78400	landslide-existing

Table 5-1	Types of slope instability: Trench sectors and approximate chainage

Gully Head Instability – Adjacent:

A moderate to steep gully head showing clear signs of instability and groundwater discharge – above or below the alignment.

An example of identified landslides, slope instability and channel head and gully are shown in Figure 5-6. All identified landslides and other slope instability sectors are shown in Appendix B:.

Figure 5-6 Channel instability (S9), landslide (S11), slope instability (S12) (Base LiDAR DEM)

5.1.6 Shore crossing

The shore crossing at Waratah Bay entails traversing a narrow, elongate depression – a former tidal channel (now drained) of Shallow Inlet – and a zone of coastal sand dunes and sand beach. The tidal channel developed between the inner margins of the Holocene coastal dunes and a slightly elevated sandy terraced surface which is a remnant of a Pleistocene higher sea level barrier. The shore crossing is at the observed limit of tidal penetration, is in a zone of potential acid sulfate soils and within the 1 in 100-year flood layer.

Between the channel and the shore is a steep ridged foredune up to 80 metres wide and 15 metres high. The dune has dense cover of woody shrubs with some small areas of exposed sand but little evidence of landward transgression. Seaward, the dune terminates as a grass-covered terrace with a scarped edge and large rootbound blocks detaching from the dune face. Most of this Waratah Bay backshore is in a state of active recession with no incipient foredune development at the time of a field inspection (Nov 2018).

Plate 5-1 Waratah Bay beach and scarped foredune near the proposed Marinus Link shore crossing (N. Rosengren 09 November 2018)

Smith (1969) noted that a foredune terrace 2 metres high and 45 m wide extended along this backshore and had developed rapidly during the late 1940's to 1960's. Smith speculated this was possibly related to a surge of sand moving anti-clockwise around the bay triggered by shoreline changes at Walkerville associated with limestone mining in the 1800's to late 1920's. This terrace is now almost completely denuded resulting in the present state of shoreline recession.

5.2 GEOLOGY

The geological framework is the basis for the development of landforms and provides the context of detailed land surface and subsurface analysis. Uniform geological information across the project was sourced from Seamless Geology (Geological Survey Victoria 2014) at 1:250,000 scale supplemented by larger scale mainly unpublished older maps by the Geological Survey of Victoria. These were used to determine detail of some areas that appeared to be too generalised on the digital data.

The project has been divided into nine geological zones based on bedrock and surficial geology (Figure 5-5). The geological ages of the project areas range from Lower Devonian faulted marine sedimentary strata of the Liptrap Formation to Pleistocene-Holocene sediments transported and deposited in coastal, fluvial, lacustrine and hillslope environments. Although not the oldest rocks, effectively the widespread basement geology from the southern to central areas are Lower Cretaceous sedimentary rocks of the Strzelecki Group that crop out in the ranges and valleys from Waratah North to Mirboo North. These are overlain by a suite of deeply weathered basalt lava flows that form hill caps and undulating plateau surfaces and extend down valley side slopes. Variably consolidated beds of sand and gravel lie under the basalt and the complex of sediments including brown coals of the La Trobe Valley Subgroup are interbedded with and overlie the lava flows north of Mirboo North. The Haunted Hills Formation is a younger distinctive sediment body deposited by flooding streams, slope colluvium and alluvial fans and includes lenticular sometimes cemented gravel beds.

The distribution of the geological units is influenced by faulting and geological and topographical boundaries are abrupt. Tectonic activity is continuing and expressed as the highest concentration of earthquakes in Victoria.

The geological zones are briefly described from south to north and approximate boundaries shown by approximate chainage in metres from Waratah Bay shore crossing (these are also shown on Figure 5-7).. The zones correspond to the most frequent materials at the surface and shallow sub-surface.

Geological Zone 1: 0 to 3150m. Quaternary sediments.

Coastal, alluvial and lacustrine deposits of unconsolidated dune sand, swamp sediments and organic material, river terraces sands, silts and clay.

Geological Zone 2: 3150 to 17800m. Pliocene – Pleistocene Haunted Hills Formation sediments.

Poorly consolidated fluvial deposits – succession of cross-bedded and lenticular gravels, sands, and clays. May be locally ferruginous and siliceous cemented beds.

Geological Zone 3: 17800 to 35200m. Lower Cretaceous Strzelecki Formation volcaniclastic sediments. Sandstone, arkose, siltstone, conglomerate, partly overlain by river terraces sands, silts and clay.

Geological Zone 4: 35200 to 40600m. Palaeocene-Miocene Thorpdale Volcanics.

Basalt, tuff, and interbedded sandstone and silcrete. Basalts are weathered and no outcrop is likely to occur along the project areas. Depth to coherent rock generally greater than 1.5 metres. Widespread cover of colluvium and older terrace alluvium on lower areas.

Geological Zone 5: 40600 to 50000m. Lower Cretaceous Strzelecki Formation volcaniclastic sediments.

Strzelecki Group of lithic volcaniclastic sandstone, arkose, siltstone, conglomerate. The formation is deeply weathered, and no outcrop is likely along the project areas. Depth to coherent rock is 1.0 to 2 metres.

Geological Zone 6: 50000 to 56700. Palaeocene-Miocene Thorpdale Volcanics. Basalt, tuff, and interbedded sandstone and silcrete. Basalts are weathered and no outcrop is likely to occur along the project areas. Depth to coherent rock generally greater than 1.5 metres. Widespread cover of colluvium and older terrace alluvium on lower areas.

Geological Zone 7: 56700 to 65200m. Latrobe Valley Group Miocene-Pliocene sediments.

Quartzose and kaolinitic fluviatile-deltaic sediments. Relatively low resistance materials.

Geological Zone 8:65200 to 75500m. Palaeocene-Miocene Thorpdale Volcanics and La Trobe Valley Subroup sediments. Basalt, tuff, and interbedded sandstone and silcrete. Basalts are weathered and no outcrop is likely to occur along the project areas. Depth to coherent rock generally greater than 1.5 metres. Widespread cover of colluvium and older terrace alluvium on lower areas.

Geological Zone 9: 75500 to 87200m. Quaternary sediments, Haunted Hills Formation. Morwell River floodplain and terraces. Alluvial, river terraces and lacustrine deposits of unconsolidated sand, organic material, silts, and clay. Possibly unmapped Poorly consolidated fluvial deposits – succession of cross-bedded and lenticular gravels, sands, and clays. May be locally ferruginous and siliceous cemented beds.

5.3 REGOLITH AND DEPTH TO BEDROCK

Aerial photograph interpretation, soil maps (Sargeant and Imhof 2003), depth to bedrock data from the land use impact model (LUIM) for West Gippsland (McNeill et al. 2007) and bore records show regolith and soil cover is continuous along the project area. The LUIM data indicates a minimum thickness between 1.0 m and 3.0 m is expected along the project area and in places may be much greater. Depth to bedrock in Cretaceous sediments (Zones 3 and 5) is expected to be between 1.0 m and 1.5 m and greater than 2.0 m in Thorpdale Volcanics (Zones 4, 6, 6). Depth to bedrock data is less relevant in areas of La Trobe Valley Formation (Zone 7) and Haunted Hills Formation (Zones 2 and 9) as these are consolidated sediments with local occurrences of cemented gravel rather than coherent rock. Bore logs for 14 localities along the Victorian area (GeoVic http://er-nfo.dpi.vic. Gov.au/sdweave/registered.htm) show depth to bedrock to be greater than 1.8 metres in the two bores on Cretaceous sediments and 4 m and 6 m to basalt on the two bores on basalt terrain. Over 20 m of sediments (described as clay, sandy clay) occur on the northern areas where surficial geology is Latrobe Valley Group and Haunted Hills Formation.

5.4 GEOMORPHOLOGY

The primary task of this technical report is to recognise the landforms of the project area in Victoria. This has been conducted at various scales as State-wide classifications (geomorphic domains), regional scale (soil-landform units) to the details of variation along the proposed trench alignment (trench sectors). Sections 5.4.1 to 5.4.4 below provide detailed definitions of these scales).

5.4.1 Geomorphic domains

A geomorphic classification of land (terrain evaluation) is developed by recognising areas that have a limited range of morphological and geological properties and behaviour. Terrain evaluation is a method of summarizing the physical aspects of a landscape by combining selected terrain attributes into groups with limited variation across defined areas. Landforms are comprised of repeated features at various scales. The smallest feature is a component – a discrete area of constant slope shape and angle that is a fundamental part of a recurring pattern across the landscape. That component has tangible information i.e., properties that are directly observable and mappable such as dimensions, shape, soil, surficial and bedrock geology and (with varying relevance) vegetation. The component also has intangible information of the terrestrial and geomorphological, pedological, hydrological and biogenic processes that have in the past and are currently shaping the tangible properties. Some processes are observable as they are instantaneous or of short duration, but the intangible processes are cryptic as they occur slowly or infrequently and must be inferred from limited temporal data. Of key importance in process inference is the spatial and temporal frequency of extreme events, as well as incremental, and long-term ongoing changes.

The project is highly terrain interactive and long-term. A positive outcome requires comprehensive understanding of the tangible and intangible properties of the terrain it is utilising. This technical report provides terrain information and interpretation relevant to the activities of the project as explained below.

The broadest spatial unit used to classify terrain along the project is here termed a geomorphological domain, defined as an area with limited range of elevation, slope form and stream density and with one geologically dominant type. The geomorphological domains represent the broad range of landforms and land-forming processes encountered along the project. Using proponent-supplied LiDAR, 10m state-wide DEM, watercourse, and water area layers (Landata Vic) and third tier units of the Victorian Geomorphology Framework, fourteen broad geomorphic domains were recognised along the project area (Figure 5-8).

Domain, chainage, location	Geology & regolith	Geomorphology	Geomorphic processes
1. Chainage – 300 to 400. Waratah Bay. Shore crossing, intertidal, beach and backshore proximal.	Holocene & Late Pleistocene sand – calcareous and siliceous. Silt, clay and fine sand lenses. Late Pleistocene dune and beach sand and clay. Unconsolidated medium to fine sand, possible calcarenite at depth (>3 metres) in high dune and seafloor below sand-shell cover. Holocene & Late Pleistocene silt, clay and fine sand lenses.	Sand beach, established high foredune ridges with relief >10 metre, strongly undulating to locally steep to very steep. Flat surface of former wide tidal channel with remnant channel now modified by drains. Low banks on drains and artificial levee. Relief <1 metre. Low broad Pleistocene sand ridges of stranded beaches and denuded foredunes. Relief <1 metre.	Wave action, wind, vegetation growth and die-back, topple, detachment of dune blocks. Runoff and possibly high spring tide inundation. Shoreline changes related to sea-level rise: erosion and inundation.
2. Chainage 400 to 1000. Inland from Waratah Bay beach to Fish Creek Waratah Road.	Pleistocene remnant barrier and coastal terrace. Weathered calcareous sand and shell overlying clay/silt bench of a now denuded higher sea-level shore platform. Late Pleistocene alluvium and minor colluvium.	Low broad Pleistocene sand ridges of stranded beaches and denuded foredunes. Relief <1 metre. Very gently inclined surface of higher sea-level estuary and floodplain.	Surface water ponding. Relict landform initially shaped by marine and aeolian processes. Subject to minor deflation. Waterlogging.
3. Chainage 1000 to 4300. Waratah North. Between Fish Creek Waratah Road and Waratah North.	Quaternary colluvium and alluvium. Sand, silt clay with minor gravels. Deposits stratified but indistinct boundaries.	Low rounded ridge crest between small channels. Smooth rectilinear slope of weakly dissected colluvial and alluvial fans downslope of more elevated terrain. Relief <4 metres	Sheetwash, soil creep. Flash flooding.
4. Chainage 4300 to 10600. Northwest from Waratah North to Duncans Road.	Haunted Hill Formation overlying Devonian sandstones. Fluvial deposits – succession of cross- bedded and lenticular gravels, sands and clays accumulated as fault apron on downthrow of NE-SW trending fault. Gravels, sands, and clays, stratified. Alluvium to 2 metres in drainage lines.	Weakly dissected slopes with relief 50-80 metres. Corridor crosses rounded ridge crests and valley slopes with shallow ephemeral stream channels. Gently undulating smooth ridge crest form an interfluve between west-draining Bridge Creek and north-draining Amber Creek.	Slope wash, wind action on exposed crests. Flash flooding. Possible landslides.
5. Chainage 10600 to 21600. Duncans Road to Bufflalo.	Quaternary alluvium and colluvium, overlying Strzelecki Formation sedimentary rock. Very thick deposits of unconsolidated sediments ranging from clay to gravel.	Undulating west-facing slopes – of colluvial and alluvial terraces south of Fish Creek. Weakly dissected by minor tributaries of Fish Creek and Tarwin River. Short steeper slopes on valley of Fish Creek. Interfluve and channels of several streams forming Buffalo Creek. Flat formerly swampy terrain now artificially drained.	Slope wash. Local channel incision. Flash flooding. Possible landslides. Channel incision and deposition. Overbank flow.
6. Chainage 21600 to 29600. Buffalo Creek to Stony Creek.	Quaternary alluvium and colluvium, Gravel, sand, and silt variably sorted and rounded. Basement of weathered. Strzelecki Group of Lithic volcaniclastic sandstone, arkose, siltstone. Very thick deposits of unconsolidated sediments ranging from clay to gravel.	Gently undulating west-facing slopes – of colluvial and alluvial terraces along valley of Tarwin River south of Stony Creek. Weakly dissected by minor tributaries of Stony Creek and Tarwin River.	Slope wash. Local channel incision.

Table 5-2 Geomorphic domains along proposed Victorian land project alignment

Marinus Link

Domain, chainage, location	Geology & regolith	Geomorphology	Geomorphic processes
7. Chainage 29600 to 40500. Between Stony Creek and Tarwin River East Branch.	Basement is Lower Cretaceous Strzelecki Group covered by deeply weathered remnants of Thorpdale Volcanics basalt and tuffaceous basalt. Widespread cover of colluvium and older terrace alluvium on lower areas. Variable depending on landscape position but typically ±1 metre overlying very weathered rock (either volcanic or sedimentary). Silt and clay dominant with lenses of gravel and some stony layers.	Plains with areas of very gently inclined surfaces. Low rounded-flattened rises are areas of Older Volcanics. Flat surfaces are alluvial of prior valley and floodplain of Tarwin River East Branch. Gently undulating surface with relief <15 metres. The landform is developed inside the Tarwin River Valley and includes high level river terraces and colluvial fans.	Slope wash. In Tarwin River Flood scour, flood deposition on floodplain. Bank recession. Fluvial channel deposits and scour.
8. Chainage 40500 to 50400. Tarwin River East Branch floodplain to east of Mardan.	Strzelecki Group Lower Cretaceous feldspathic and tuffaceous sandstone and chloritic mudstone. Some pebble beds. Close-spaced fractures. Previous cover of Older Volcanics basalt. Deeply but variably weathered sandstone and mudstones. Colluvium. Minor areas of rock outcrop.	Strongly undulating dissected terrain. Rolling to steep hills of narrow ridges, rounded crests above convex slopes. Narrow valleys. Mid-lower slopes with colluvial deposits.	Sheet wash, soil creep, soil slumping and localised soil flows and shallow and possibly deep landslides.
9. Chainage 50400 to 56400. East of Mardan to east of Mirboo North.	Widespread cover of deeply weathered Thorpdale Volcanics overlying Strzelecki Group Lower Cretaceous feldspathic sandstone and chloritic mudstone.	Strongly undulating dissected terrain. Steep ridges, rounded crests above convex slopes.	Multiple mass movement processes. Slope wash soil creep, shallow and possibly deep landslides. Groundwater outflow. Gully erosion.
10. Chainage 56400 to 65400. From east of Baromi (Mirboo North) to south of Delburn.	Latrobe Valley Group. Quartzose and kaolinitic fluviatile-deltaic sediments, sands and clays, minor gravel. Quaternary alluvium in valleys.	Strongly undulating hilly terrain of broad rounded crests and convex to rectilinear valley slopes.	Slope wash. Local channel incision.
11. Chainage 65400 to 73400 North Boundary Road to Kings Road (Driffield).	Widespread cover of Thorpdale Volcanics overlying Strzelecki Group Lower Cretaceous feldspathic sandstone and chloritic mudstone. Some pebble beds. Close-spaced fractures.	Undulating, low hills and plateau. Mainly broad rounded ridge crest.	Mass movement processes, landslides on steeper valley slopes.
12. Chainage 73400 to 76800. Smiths Road (Driffield) to Yinnar Driffield Road.	Latrobe Valley Group and Haunted Hills Formation. Quartzose and kaolinitic fluviatile-deltaic sediments. Lenticular sands and clays, minor gravel.	Undulating low rises. Bluff at valley margin west of Morwell River floodplain.	Slope wash. Shallow landslides.
13. Chainage 76800 to 83500. Morwell River floodplain and palaeochannels and palaeovalley of Yinnar- Driffield Road to Switchback Road.	Latrobe Valley Group and Haunted Hills Formation. Quaternary alluvium.	Valley-side bluff, alluvial terraces, floodplain, and channel. Palaeochannels and cut-offs. Steep alluvial banks. Channel incised ±5 metres below floodplain surface.	Overbank flows, bank erosion and meander migration.

Domain, chainage, location	Geology & regolith	Geomorphology	Geomorphic processes
14. Chainage 83500 to 87200. Switchback road to Hazelwood converter station.	Haunted Hills Formation. Quaternary (Pleistocene) alluvium.	Undulating Plain. Gently sloping surface to gently undulating surface. High terraces of Morwell River. Remnant palaeochannels.	Slope wash, Flood.

Figures 5-9 to 5-14 show the geomorphic domains (white arrows and upper-case label GD1 etc.), soillandform units (upper-lower case letters Ag etc.), trench sectors (coloured line – each sector is shown in a different colour to differentiate from adjacent sectors and are not indicators of sensitivity of impact), representative chainage (3400 etc.) from Waratah Bay. Base is a LiDAR DEM and 10m DEM outside the alignment with a transparent aerial photograph overlay. The definitions of each of these different scale units is provided in Sections 5.4.1 to 5.4.3.

Figure 5-10 Location of geomorphic units GD4 to GD5 (Base: LiDAR DEM, aerial photograph, and soil-landform units transparent overlay)

Figure 5-11 Location of geomorphic units GD6 and GD7 (Base: LiDAR DEM, aerial photograph, and soil-landform units transparent overlay)

Figure 5-13 Location of geomorphic units GD10 to GD11 (Base: LiDAR DEM, aerial photograph, and soil-landform units transparent overlay)

Figure 5-14 Location of geomorphic units GD12 to GD14 (Base: LiDAR DEM, aerial photograph, and soil-landform units transparent overlay)

5.4.2 Soil-landform units

The fourteen geomorphic units outlined above are further divided into soil-landform units. Soil-landform units are based on an ecosystem concept in which climate, geological material, landform, and soil are integrated as affect the inherent properties of the land, and its response to management (Charman & Murphy 1991). The soil-landform units used in this study were developed by Sargeant and Imhoff (2013) at a mapping scale of 1:100,000. Each soil-landform unit is an association of a specific landform pattern and its accompanying soils while considering other environmental variables, notably climate and drainage. The soil-landform unit boundaries were used because of the larger scale and field-based nature of the surveys (Sargeant and Imhof 2003) rather than mapped geological boundaries at 1:250,000 scale. Jacobs (2021, 2022a, 2022b) reports were consulted to verify soil descriptions.

Some soil-landform map units have only one land component and a limited range of geology and landforms, but many are complex having several components. Sixty-nine soil-landform units occur along the project alignment.

Table 5-3Soil-landform units

Soil- landform number	ID	Approx. chainage	Soil-landform unit	Landform	Geology
1	sd	-120 to 20	Sand dune	Dunefield	Pleistocene to Recent aeolian sediments
2	rm	20 to 390	Recent marine	Marine Plain	Recent sediments (marine)
3	Ag	390 to 850	Agnes	Gently undulating Plain	Pleistocene (late) to recent alluvium & colluvium
4	Fo	850 to 2270	Foster	Undulating Rises	Tertiary sediments
5	Ag	2270 to 4450	Agnes	Gently undulating Plain	Pleistocene (late) to recent alluvium & colluvium
6	In	4450 to 8050	Inverloch	Undulating rises	Tertiary sediments
7	Ko	8050 to 9490	Koonwarra	Undulating hills	Cretaceous sediments
8	In	9490 to 10650	Inverloch	Undulating rises	Tertiary sediments
9	Ko	10650 to 12200	Koonwarra	Undulating hills	Cretaceous sediments
10	In	12200 to 14250	Inverloch	Undulating rises	Tertiary sediments
11	Bu	14250 to 14350	Buffalo	Gently undulating plain	Pleistocene (late)sediments
12	In	14350 to 16390	Inverloch	Undulating rises	Tertiary sediments
13	Tw	16390 to 17100	Tarwin	Flood plain	Recent alluvial sediments
14	Ko	17100 to 17650	Koonwarra	Undulating hills	Cretaceous sediments
15	Tw	17650 to 17840	Tarwin	Flood plain	Recent alluvial sediments
16	Ко	17840 to 18100	Koonwarra	Undulating hills	Cretaceous sediments
17	Ls	18100 to 19000	Leongatha South	Gently undulating rises	Tertiary sediments
18	Bu	19000 to 20600	Buffalo	Gently undulating plain	Pleistocene (late)sediments
19	Ко	20600 to 21490	Koonwarra	Undulating hills	Cretaceous sediments
20	riv	21490 to 21680	riverine	Narrow Alluvial Plains	Recent sediments
21	Ls	21680 to 22820	Leongatha South	Gently undulating rises	Tertiary sediments
22	riv	22820 to 22980	riverine	Narrow Alluvial Plains	Recent sediments
23	Ls	22980 to 28400	Leongatha South	Gently undulating rises	Tertiary sediments
24	riv	28400 to 29500	riverine	Narrow Alluvial Plains	Recent sediments
25	Ls	29500 to 32350	Leongatha South	Gently undulating rises	Tertiary sediments
26	Ко	32350 to 32890	Koonwarra	Undulating hills	Cretaceous sediments
27	Ls	32890 to 33180	Leongatha South	Gently undulating rises	Tertiary sediments
28	Ко	33180 to 34290	Koonwarra	Undulating hills	Cretaceous sediments
29	Ls	34290 to 34520	Leongatha South	Gently undulating rises	Tertiary sediments
30	Po	34520 to 35780	Powlett	Flood Plains	Recent sediments
31	Wg	35780 to 36330	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
32	Po	36330 to 39580	Powlett	Flood Plains	Recent sediments
33	Ls	39580 to 40370	Leongatha South	Gently undulating rises	Tertiary sediments
34	Po	40370 to 40705	Powlett	Flood Plains	Recent sediments

Soil- landform number	ID	Approx. chainage	Soil-landform unit	Landform	Geology
35	Sz	40705 to 45450	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
36	Wg	45450 to 45870	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
37	Sz	45870 to 46090	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
38	Wg	46090 to 46380	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
39	Sz	46380 to 49550	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
40	Wg	49550 to 50220	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
41	Sz	50220 to 50510	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
42	Wg	50510 to 52090	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
43	Sz	52090 to 52705	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
44	Wg	52705 to 53090	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
45	Sz	53090 to 54300	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
46	Wg	54300 to 54380	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
47	riv	54380 to 55205	riverine	Narrow Alluvial Plains	Recent sediments
48	Wg	55205 to 55950	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
49	Sz	55950 to 56380	Strzelecki	Rolling to Steep Hills	Cretaceous sediments
50	Wg	56380 to 57400	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
51	Mr/Bl	57400 to 60990	Morwell with Boolarra	Rolling Low Hills to Undulating Rises	Tertiary sediments
52	Wg	60990 to 61300	Warragul	Rolling low hills to Undulating rises	Tertiary Basalts
53	Mr/Bl	61300 to 61800	Morwell with Boolarra	Rolling Low Hills to Undulating Rises	Tertiary sediments
54	BI/Mr	61800 to 63400	Boolarra with Morwell	Rolling Low Hills to Undulating Rises	Tertiary (Pliocene) sediments
55	Sw	63400 to 63695	swamp	Lacustrine Plain	Recent sediments
56	Sc/Wg	63695 to 73580	Silver Creek with Warragul	Rolling Low Hills	Tertiary sediments & Tertiary basalts
57	BI/Mr	73580 to 76850	Boolarra with Morwell	Rolling Low Hills to Undulating Rises	Tertiary (Pliocene) sediments
58	Yn	76850 to 77370	Yinnar	Stagnant Alluvial Plain	Pleistocene (late) sediments
59	riv	77370 to 77650	riverine	Narrow Alluvial Plains	Recent sediments
60	Yn	77650 to 77820	Yinnar	Stagnant Alluvial Plain	Pleistocene (late) sediments
61	riv	77820 to 78270	riverine	Narrow Alluvial Plains	Recent sediments
62	Yn	78270 to 79400	Yinnar	Stagnant Alluvial Plain	Pleistocene (late) sediments

Soil- landform number	ID	Approx. chainage	Soil-landform unit	Landform	Geology
63	Bl/Mr	79400 to 79870	Boolarra with Morwell	Rolling Low Hills to Undulating Rises	Tertiary (Pliocene) sediments
64	Yn	79870 to 83520	Yinnar	Stagnant Alluvial Plain	Pleistocene (late) sediments
65	riv	83520 to 83900	riverine	Narrow Alluvial Plains	Recent sediments
66	Ly	83900 to 84905	Loy Yang	Undulating Plains	Tertiary sediments
67	riv	84905 to 85310	riverine	Narrow Alluvial Plains	Recent sediments
68	Yn	85310 to 85660	Yinnar	Stagnant Alluvial Plain	Pleistocene (late) sediments
69	Ly	85660 to 87200	Loy Yang	Undulating Plains	Tertiary sediments

5.4.3 Trench sectors

The highest resolution geomorphic division of the project area is a discrete length – termed trench sector – defined by a combination of soil-landform units, geology and a collection of geomorphic processes. A change in geomorphic attributes determines the boundary of a trench sector. A total of 183 terrestrial trench sectors was recognised along the project alignment, three additional at the Waratah Bay shore crossing and four additional at the offtake to the Driffield and Hazelwood converter stations (Figure 5-5).

The project area has been assessed by identifying geomorphic divisions, called trench sectors, for the changes in key landforms within the broader soil-landform units. The complexity of much of the dissected landscape and the density of stream incision combined with geological units gave rise to the high number of trench sectors recognised. This number must be regarded as minimal as it is based on desk study only. It is possible that a field study will distinguish features present that cannot be recognised from remote data or have developed since the imagery was procured in 2021.

5.5 GEOHERITAGE

A geoheritage review from the Geological Society of Australia (GSA) was commissioned by EGS in December 2022. The review was conducted by Dr. Susan White (Chair Geoheritage Sub-committee, GS (Victoria)). The findings are shown in Appendix E. The review identified two large sites listed in this corridor: Waratah Bay-Cape Liptrap and the La Trobe Valley Brown Coal Deposits with subsites that are of high significance. However, the easement does not affect these specific subsites. It was concluded there were no serious issues with sites of significance with the development of the project and construction activities will not degrade the inherent properties of the large sites.

6. IMPACT ASSESSMENT

The potential impacts of the project on the inherent geomorphic attributes of the project area were assessed for each of the 192 trench sectors, including the shore crossing and Driffield and Hazelwood converter station connections. The assessment was on the five-fold rating scale shown in Table 4-4 .and the methodology to arrive at each of impact assessment is discussed in Section 4.3 above.

6.1 MECHANISMS CAUSING IMPACTS

The core engineering activity of the project is excavation of a total of 87 km of excavated and bored (HDD) trench and associated infrastructure. The inherent nature of these activities will impact the ground surface and sub-surface and expose sub-surface materials for varying periods of time. The impacts include imposing subsurface materials and instantaneous, repeated, and long-term ground loading imposed by personnel, vehicles, construction materials and excavation spoil.

Geomorphology is impacted by the following project activities:

- vegetation clearing exposing soils to erosion and surface water infiltration.
- ground disturbance exposing soils to erosion.
- ground disturbance destabilising landforms.
- ground disturbance exposing excavated surfaces to surface water infiltration potentially causing increased groundwater loading and consequential slumping and / or slope failure of landforms.
- ground disturbance causing erosion and sedimentation of watercourses and/or drainage lines resulting in channel avulsion and / or watercourse form instability.
- ground disturbance causing watercourse / drainage line diversion or infill with consequential erosion, scour, sedimentation, and depleted groundwater resources.
- ground disturbance exposing actual and / or potential acid sulfate soils.

6.1.1 Potential impacts

Potential impacts on geomorphology are:

- Creation of unstable landforms in the short-term during construction.
- Potential for creation of long-term instability through changes to one or more of the geomorphic attributes of the present landscape.
- Potential change to channel dynamics of trenched waterways.
- Lost or degraded soil structure and other physical properties.
- Changed surface flow condition (run-on and runoff) and infiltration.
- Locally altered groundwater dynamics.
- Changed vegetation communities.

6.1.2 Actual impacts

Actual impacts on geomorphic attributes will be determined by:

- Inherent attributes (properties) of the ground surface and shallow sub-surface and the response to mechanical disturbance and loading.
- Engineering techniques and environmental management measures to minimise adverse outcomes to the project assets and the immediate and wider landscape. These apply during the construction phase and for the life of the project assets.

6.2 SIGNIFICANCE OF IMPACT ASSESSMENT

Significance of impact for each component of the project has been undertaken. The methodology of impact assessment is discussed in Section 4.3 above. The significance of impact assessment has been conducted in two different phases 1) in an unmitigated state and 2) with the application of EPRs. The assessment includes three groups of localities and activities. The main trench alignment is assessed in Table 6-4. The shore crossing is assessed in Table 6-5, Driffield converter station is assessed in Table 6-6 and Hazelwood converter station is assessed in Table 6-7.

Appendix A is an Excel Spreadsheet with details of the sensitivity and significance of impact assessment for the nine geomorphic attributes of each trench sector, the overall sensitivity of the sector, the unmitigated impact for each sector, the EPR to apply and the resultant residual impact for each sector.

6.2.1 Unmitigated significance of impact for trench sectors

A summary of potential significance of impact for each trench sector of the main alignment is presented in Table 6-4 below. This is an assessment of the initial impact of the project on geomorphology without consideration of mitigation measures. The methodology to arrive at the impact rating is described in Section 4 above.

6.2.2 Environmental performance requirements (EPRs)

EPRs set out the environmental outcomes that must be achieved during design, construction, operation and decommissioning of the project. The EPRs define conceptual management measures which must be applied to minimise the impact of the development on the geomorphology and soils. They allow a residual significance of impact assessment to be undertaken. Compliance with EPRs is intended to minimise impacts and the risk of harm to environmental values to within reasonable limits having regard to contextual factors and the practical delivery of the project.

A decommissioning management plan will be prepared to outline how activities will be undertaken and potential impacts managed and addressing the items outlined in these geomorphology EPRs. The EPR for the decommissioning management plan is provided in EIS/EES Volume 5, Chapter 2 – Environmental Management Framework.

A tolerable level of risk (referenced in GM02) is defined as a risk within a range that society can live with to secure certain net benefits. It is a range of risk regarded as non-negligible and needing to be kept under review and reduced further if possible (ASG, 2007). Determining the tolerable risk level for each location would consider factors such as:

- slow-moving landslides
- comprised of predominantly earth materials
- minimal to negligible occurrence of coherent rock materials or boulders

- moderate slope angles limit the runout potential
- moderate relief limits the runout potential
- rural location limits the potential for human targets and risk of loss of life
- rural location limits the nature and extent of damage or destruction to built structures and other, infrastructure
- disruption to rural agricultural activities will occur for restricted time periods and in some instances (not able to be identified here) some soil damage may be irrecoverable. The small area affected is seen to fall within tolerable risk.

EPR ID	Environmental performance requirement			
GM01	Assess ground conditions and landslide risks to inform design and construction methods	Design		
	Prior to commencement of project works, complete surveys and site assessments along the project alignment, converter station, shore crossing and transition station to assess ground conditions to inform the design and site specific construction methods for the project components including above ground infrastructure, buildings, access roads, underground cables, joint bays, and laydown areas.			
	person and include, but not limited to:			
	 Seismic assessment to assess seismic hazards. 			
	 Geotechnical testing to confirm geological conditions. 			
	Groundwater levels.			
	Landslide risk assessment.			
GM02	Develop designs that minimise construction induced ground movement	Design		
	Prior to commencement of project works, develop a design for below and above ground infrastructure that:			
	 Addresses areas of high landslide risk identified in EPR GM01 and implement design measures to reduce landslip risks to tolerable levels in accordance with Australian Geomechanics Society landslide management guidelines: 			
	 Landslide Risk Management Concepts and Guidelines (AGS 2000) 			
	 Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning (AGS 2007) 			
	 Commentary on Guideline for Landslide Susceptibility, Hazard and Risk Zoning for Land Use Planning (AGS 2007) 			
	 Practice Note Guidelines for Landslide Risk Management (AGS 2007) 			
	 Commentary on Practice Note Guidelines for Landslide Risk Management (AGS 2007) 			
	 The Australian GeoGuides for Slope Management and Maintenance (AGS 2007) 			
	 Includes measures to stabilise construction areas using appropriate engineering techniques in particular where cuts and fills are required. 			
	 Responds to local soil and groundwater conditions including the potential for reactive soils such as in weathered volcanics and alluvial sediments and other clay rich soils. 			
	 Considers induced settlement through subsidence resulting from groundwater drawdown through construction. 			
	 Allows for ground movements (both lateral and vertical) within the design of cable joints and couplings, and any surface infrastructure. 			
	Where landslide risks cannot be addressed through design controls, the project alignment must be amended to reduce landslide risks to a tolerable level.			

Table 6-1 Environmental performance requirements

EPR ID	Environmental performance requirement				
GM03	Develop designs that minimise ground disturbance due to vegetation removal and disturbance of acid sulfate soils	Design			
	Prior to commencement of project works, develop designs for below and above ground infrastructure that:				
	Are informed by investigations required in EPR GM01.				
	 Includes measures to ensure ground disturbance is kept to a minimum following vegetation clearance. 				
	Minimises disturbance of ASS as outlined in EPR CL03.				
GM04	Undertake construction excavations in accordance with Australian Standards and informed by geotechnical investigations	Construction			
	Prior to commencement of project works, develop methods that:				
	 Are in accordance with AS 3798-2007 Guidelines on earthworks for commercial and residential developments, and the Best Practice Erosion and Sediment Control Guidelines (IECA 2008). 				
	 Ensure all trenches are backfilled with suitable engineering materials to an appropriate design compaction standard to ensure long term trench and slope stability. 				
	 Include cut and fill batter angles that are commensurate with long term engineering designs. 				
	 Include measures for treating exposed faces in a manner to limit erosion and promote longer term vegetation growth. 				
	 Minimise the duration of open trenches in landscapes susceptible to movement. 				
	• Utilise excavation equipment that is suitable for the geological conditions and able to efficiently construct the proposed trench profile.				
	Include a program for inspections of excavations during construction.				
	These measures must be documented in a sub plan to the CEMP and implemented during construction.				
GM05	Develop and implement methods for trenchless construction (HDD) that have considered ground conditions	Construction			
	Prior to commencement of project works, develop measures where trenchless construction methods will be implemented that addresses site conditions as determined through the assessments completed to comply with EPR GM01.				
	 These methods must be specific to the location, geology, terrain and surrounding landscape stability. 				
	 These measures must be documented in a sub plan to the CEMP and implemented during construction. 				
GM06	Develop and implement methods to provide trench stability during construction	Construction			
	Prior to commencement of project works, develop measures that provide trench stability and consider factors such as, but not limited to:				
	 Measures that support the stability of the surrounding landscape to maintain lateral support. 				
	 Measures to support trench walls and prevent collapse in all ground conditions including unconsolidated and soft soils such as a result of presence of marine deposits, alluvial sediments and weathered, saturated basalts. 				
	 Methods to manage trench dewatering, where it is required, to avoid and/or minimise scouring and erosion. 				
	 Avoiding surface water from entering the trench during and after construction, and if not possible to avoid, install appropriate drainage with managed outlets. 				
	Minimise the duration that trenches are kept open.				

EPR ID	Environmental performance requirement	Project stage
	These measures must be documented in a sub plan to the CEMP and implemented during construction.	
GM07	Develop and implement methods to provide slope stability during trenching	Construction
	Prior to commencement of project works, develop measures that ensure stability on slopes and consider factors such as, but not limited to:	
	 Avoid and minimise water being dammed in trenches which could then induce saturated slopes and initiate instability. 	
	 Avoid placement of spoil from trenches next to a trench on moderate to steep slopes to reduce impact on slope instability. 	
	 Implement measures so that the trench and the slope above is fully supported and the upslope is not undermined and initiates failures. 	
	Minimise the duration that trenches are kept open.	
	 Wherever possible, sequence trenching to work down the slope rather than up the slope to avoid undermining moderate to steep slopes from below. 	
	 Includes measures to ensure slope stability above and below the trench following vegetation clearance. 	
	These measures must be documented in a sub plan to the CEMP and implemented during construction.	
GM08	Develop and implement a site drainage plan to minimise site run off and avoid and/or minimise impacts to ground and slope stability	
	Prior to commencement of project works, develop measures to avoid and minimise impacts to ground and slope stability. The plan must document measures and where they will be applied to address:	
	• The provision of drainage for any area of disturbed ground and construction of level areas.	
	• Existing gullies or areas susceptible to gullying by avoiding the concentration of water flows into susceptible areas.	
	Avoid creating closed depressions so as to avoid ponding of runoff.	
	These measures must be documented in a sub plan to the CEMP and implemented during construction	
GM09	Develop and implement a watercourse crossing plan to avoid and/or minimise impacts to existing fluvial geomorphology	Construction
	Prior to commencement of project works, develop a plan for watercourse crossings that documents the measures and where they will be applied to avoid and minimise impacts to fluvial geomorphology. The plan should address:	
	 Management of trenching across watercourses to avoid major damming and channel incision of watercourses. 	
	Adopting trenchless construction methods for all significant watercourses.	
	These measures must be documented in a sub plan to the CEMP and implemented during construction.	

6.2.3 Assessment of residual impact

Residual impacts are the potential impacts remaining after the application of EPRs. The extent to which potential impacts have been reduced is determined by undertaking an assessment of the significance of the residual impacts. This is a measure of the effectiveness of the EPRs in reducing the magnitude of the potential impacts, as the sensitivity of the value does not change, but the magnitude of the impact can. The residual impact assessment assumes successful implementation of the EPRs.

6.2.4 Residual significance of impact for trench sectors

Following the application of what were the most appropriate EPRs in each trench section, an assessment of residual significance of impact was then conducted. Results are presented alongside the initial unmitigated assessment in Table 6-4 below. Figure 6-1 diagrammatically displays the results for unmitigated and residual significance of impact on geomorphology and soils.

The effectiveness of EPRs at some trench sectors is still uncertain due to the possible significance of some geomorphic processes, e.g., active landslides. The full nature of some of these processes is uncertain due to lack of field inspection of the site and absence of appropriate ground conditions and geotechnical assessment.

Site investigation by a geomorphologist (including collection of sub-surface cores down to at least trench/HDD depth to determine stratigraphy) of the 13 sectors of high residual impact is recommended to inform project design, including choice of construction methods. If site investigation reveals that ground conditions are unsuitable for construction or construction activities might impact slope stability or existing or potential landslides (i.e., geomorphic stability cannot be assured through design and application of EPRs), realignment is recommended In those sectors.

6.2.5 Explanation of residual significance of impact assessment

This section supplements Table 6-4 and Appendix A: and addresses all 71 trench sectors assessed as having a major or high unmitigated significance of impact. It divides these into two groups (residual high significance of impacts and residual moderate or low significance of impacts) and explains the reasons for determining the residual significance of impact rating.

The available data on site sensitivity was considered sufficient to determine that with appropriate design and construction/operation management measures, the suggested EPRs will reduce the residual significance of impact for 58 trench sectors from major or high to moderate or low (Table 6-2). A low impact means the area of impact is localised (within the project operational area) and effectively remediated with standard mitigation. A moderate impact means the area of impact due to a change in landform or landform processes is geographically limited and has a magnitude of impact that forms a tolerable and acceptable risk as defined by the Australian Geomechanics Society Landslide Taskforce "Commentary on Practice Note Guidelines for Landslide Risk Management 2007" Australian Geomechanics Vol 42 No 1 March 2007.

Measures expected to be implemented to comply with EPRs are generally intended to reduce the risk of impact to a "tolerable risk" level. Examples of these measures include timing trench construction and other site processes to take account of seasonal conditions, and avoid, minimise or otherwise manage activity during adverse ground and weather conditions such as recent, current or forecast heavy rainfall. Impacts fall within tolerable and acceptable risk classes due to the:

- landscape character including limited local relief, moderate slope angle, substrate of regolith soil
 rather than rock materials, and
- land use rural land use reduces exposure of people to any hazard (such as a landslide) generated by the impact of the project activity.

Examples of tolerable risk impacts are provided in Table 6-2.

Trench sector	Reasons for unmitigated major or high significance of impact	Reasons for residual moderate or low significance of impact	Description of moderate or low impacts (Tolerable impacts)
SC1, SC2	Unconsolidated, saturated substrate	Appropriate HDD protocols including sub-surface investigations prior to HDD	Minor and short-term surface subsidence that will be recovered by natural sand deposition
S1	Inundation, surface flows and soft soils. Potential ASS	Timing to avoid wet weather and extreme tide. Appropriate acid sulfate soil management	Minor subsidence and compaction that is not expected to extend beyond trench width.
S2	Soft soils, sand blowouts	Timing to avoid adverse weather and strong wind.	Minor subsidence and compaction. Potential for sand blowout that can be managed by earthworks, fill and revegetation.
S9, S23, S78 S94, S98	Potential flooding and waterlogging	Timing to avoid adverse stream flow and wet weather	Minor scouring of trench fill, recession of alluvial bank. Addressed by physical repair or replacement of lost soil.
S12, S20, S51, S55, S59, S61, S62, S63, S66, S68, S71, S73, S74, S91, S93, S95, S102, S123, S142	Uncertain geology and geological structure, evidence of slope instability	Appropriate site management to accommodate actual conditions encountered at time of construction	Shallow landslide of limited lateral extent. Damage could occur to fences and ground surface causing impediment to farm vehicle access, weakening of farm dam base.
S16, S80, S115, S144, S158, S162	Dissected or steep terrain	Appropriate site management of spoil and stockpiles	Shallow landslide of limited lateral extent. Damage could occur to fences and ground surfaces causing impediment to farm vehicle access.
S28, S70, S86, S104, S136, S138	High groundwater or spring outflow	Timing of construction to avoid adverse ground conditions	Shallow landslide of limited lateral extent. Damage could occur to fences and ground surfaces causing impediment to farm vehicle access, temporary impedance to stream flow.
S31, S38, S44, S46, S50, S53 S72, S88, S93, S103, S109, S113, S124, S131, S133, S140, S159, S161	Active channel, flooding	Timing of construction to avoid potential episodes of high stream flow	Short-term cessation of work and minor disruption to construction schedule.
D5	Due to regolith, geology change and groundwater proximity to cuts significant relief and slope issue due to	Detailed geotechnical report is available	Short-term cessation of work and minor disruption to construction schedule.

Table 6-2	Reasons for reductions in significance of impact across 58 trench sectors
-----------	---

Trench sector	Reasons for unmitigated major or high significance of impact	Reasons for residual moderate or low significance of impact	Description of moderate or low impacts (Tolerable impacts)	
amount of cut and fill needed				
H1	Due to regolith, possible significant relief and slope issue due to amount of cut and fill needed	Stability assessment and geotechnical investigation required to confirm site character and stability	Short-term cessation of work and minor disruption to construction schedule.	

A high residual impact means a change may be long-term or permanent for some geomorphic attributes and the effects extend beyond the project operational area. It is considered that at present, there is insufficient critical ground condition and subsurface data for 13 trench sectors to allow reduction in residual significance of impact below high (Table 6-3). These trench sectors require geotechnical assessment to confirm slope stability/instability, regolith and geological boundaries. LiDAR DEM images of these 13 trench sectors are presented in Appendix D: The EPRs require further site investigation and testing at these locations, to inform design measures to address ground conditions and maintain land stability, with the aim of preventing the project from causing geomorphological impacts such as a landslide or subsidence.

Trench sector	Chainage	Reasons for residual significance of impact remaining high
SC3	-120 to 0	The coastal dunes are an inherently unstable landform subject to wave and wind erosion. The composition and structure of the underlying substrate is unknown including the depth of the sand mass overlying the proposed HDD and the potential for perched aquifers associated with organic material layers in the dunes and the inland swale and drain. The HDD could intercept perched aquifers and overpressure during drilling could saturate and weaken the substrate causing subsidence. Subsidence could extend to the surface in the form of sinkholes along the borehole alignment.
S11	4950 to 5200	Complex terrain, two watercourse channels, uncertainty as to surficial geology and spatial extent and type of slope movements in valley floor and western slopes. Trenching has the potential to initiate slope failure and subsequent displacement of the cable trenches.
S64	45350 to 45500	Evidence of landslide on the slopes obliquely crossed by the trench which is at the contact between deeply weathered Thorpdale Volcanics underlying weathered Strzelecki Group sedimentary rocks. It is likely that sub-volcanic sediments of low strength occurs between these two formations. The ground disturbance associated with trenching and backfill may initiate further slope failure.
S75	47700 to 48000	Trench traverses contour-parallel for 300 metres across slopes of $10 - 15$ degrees with evidence of landslides above an incised stream channel. Potential to initiate slope failure, dislocating the cable trenches. Displaced material could block the channel.
S79	48430 to 48740	Trench crosses two active stream channels and ascends an 18 degree slope with evidence of small landslides and other slope instability in deeply weathered Thorpdale Volcanics and weathered Strzelecki Group sedimentary rocks. Possible sub-volcanic sediments of low strength occur between these two weathered units. The orientation of the trench may act as a groundwater conduit and in this low- strength materials could initiate ongoing land instability.

	Table 6-3	Reasons for retaining high residua	I significance of impact across	13 trench sectors
--	-----------	------------------------------------	---------------------------------	-------------------

Trench sector	Chainage	Reasons for residual significance of impact remaining high
S81	49100 to 49340	Sectors 81 comprises of a group of potentially unstable surfaces that could be further comprised by trenching. Sector 81 has lopes of 12 to 16 degrees in weathered Strzelecki Group sedimentary rocks with evidence of a possible landslide. The orientation of the trench may act as a groundwater conduit and in this low-strength materials could initiate ongoing land instability. Trenching may introduce bank recession and undercut the slopes adjacent to sector 81.
S82	49340 to 49380	Sectors 82 comprises of a group of potentially unstable surfaces that could be further comprised by trenching. Trench crosses active channel with bank slopes around 20 degrees located below 12 to 16 degrees valley-side slopes in weathered Strzelecki Group sedimentary rock.
S83	49380 to 49600	Sectors 83 comprises of a group of potentially unstable surfaces that could be further comprised by trenching. Capping of deeply weathered Thorpdale Volcanics at ridge crests indicates deep regolith of weathered Strzelecki Group sedimentary rocks. Possible sub-volcanic sediments of low strength occurs between these two weathered units and may be a source of groundwater outflow. The orientation of the trench may act as a groundwater conduit and in this low-strength materials could initiate ongoing land instability. Trenching may introduce bank recession and undercut the slopes of adjacent sector 83.
S85	50000 to 50300	Existing landslides in deep regolith of weathered Strzelecki Group sedimentary rocks below deeply weathered Thorpdale Volcanics and sub-volcanic sediments. The orientation of the trench may act as a groundwater conduit and in this low-strength materials could initiate ongoing land instability
S89	50540 to 50740	Existing landslide in deeply weathered Thorpdale Volcanics. The orientation of the trench may act as a groundwater conduit and in this low-strength material could initiate ongoing land instability.
S114	55010 to 55030	Very steep slope/escarpment (22 to 35 degrees) and landslide in deeply weathered Thorpdale Volcanics. The orientation of the trench may act as a groundwater conduit and in this low-strength material could initiate ongoing land instability.
S117	56250 to 56830	Complex geology and regolith. Uncertain geological boundaries given existing small scale geological mapping. Significant landslide features need sub-surface assessment to allow determination of the potential response of the slopes when trenched and backfilled.
S132	66640 to 66900	Possible landslide in deeply weathered Thorpdale Volcanics and uncertain regolith on slope >18 degrees. Trench is slope-parallel and could result in slope instability becoming active.

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S1	0 to 380	Recent Marine (rm)	Palaeo tideway	Inundation, surface flows and soft soils. Potential ASS	Major	Moderate
S2	380 to 850	Agnes (Ag)	Gently undulating ridge + swale plain	Regolith / Trench stability and soft soils	High	Moderate
S3	850 to 2270	Foster (Fo)	Plain	Regolith / Trench stability and soft soils, possible waterlogging	Moderate	Low
S4	2270 to 2850	Agnes (Ag)	Gently undulating plain	Regolith/Trench stability and soft soils	Moderate	Low
S5	2850 to 2890	Agnes (Ag)	Channel	Very steep sided channel and soft materials	Moderate	Moderate
S6	2890 to 3500	Agnes (Ag)	Gently undulating plain	Regolith / Trench stability and soft soils	Moderate	Low
S7	3500 to 4440	Agnes (Ag)	Gently undulating plain	Potential for variable soil stratigraphy including gravel	Moderate	Low
S8	4440 to 4690	Inverloch (In)	Undulating rises	Proximity to the drainage line below	Moderate	Low
S9	4690 to 4720	Inverloch (In)	Channel	Mainly to do with drainage and flooding / surface flows. Base of a drainage line	Major	Moderate
S10	4720 to 4950	Inverloch (In)	Undulating rises	Potential for variable soil stratigraphy including gravel	Moderate	Low
S11	4950 to 5200	Inverloch (In)	landslide	Complex terrain and uncertainty as to spatial extent of slope movement	Major	High
S12	5200 to 5450	Inverloch (In)	Undulating rises	Uncertain geology and geological structure, evidence of slope instability	Major	Moderate
S13	5450 to 6400	Inverloch (In)	Undulating rises to low hills	Some relief and slope, possible excavation issues	Moderate	Low
S14	6400 to 7100	Inverloch (In)	Undulating rises	Crossing drainage line at 6700	Moderate	Low
S15	7100 to 7250	Inverloch (In)	Undulating rises	Proximity to a head of a drainage line	Moderate	Low
S16	7250 to 8030	Inverloch (In)	Undulating rises	Dissected landscape	Major	Moderate
S17	8030 to 8650	Inverloch (In) (Adjusted)	Undulating rises	No significant attributes	Moderate	Low

Table 6-4	Summary of significance of	of impact assessment for trench sectors	- unmitigated and mitigated by application of EPRs
-----------	----------------------------	---	--

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S18	8650 to 9070	Koonwarra (Ko)	Undulating hills	Mainly due to flood and hydrology plus erosivity	Moderate	Low
S19	9070 to 9300	Inverloch (In) (Adjusted)	Gently undulating rises	Due to uncertainty in ground conditions	Moderate	Low
S20	9300 to 9600	Inverloch (In) (Adjusted)	Gently undulating rises	Possible slope instability and uncertain ground conditions	High	Low
S21	9600 to 14200	Inverloch (In) (Adjusted)	Gently undulating rises	Due to uncertainty in ground conditions	Moderate	Low
S22	14200 to 14370	Buffalo (Bu)	Alluvial plain	Due to uncertainty in ground conditions	Moderate	Low
S23	14370 to 14680	Buffalo (Bu)	Narrow alluvial plains (riverine)	Due to incised channel and hydrology/ flood	High	Moderate
S24	14680 to 15000	Buffalo (Bu)	Narrow alluvial plains (riverine)	Hydrology and surface flows	Moderate	Low
S25	15000 to 17150	Inverloch (In) (Adjusted)	Gently undulating plain	Due to uncertain ground conditions	Moderate	Low
S26	17150 to 17670	Tarwin (Tw)	Flood plain	Due to ground conditions and hydrology. Some consideration for native vegetation	Moderate	Low
S27	17670 to 17740	Tarwin (Tw)	Channel	Due to flood and steep channel banks	Moderate	Low
S28	17740 to 18270	Koonwarra (Ko)	Low steep hill	Steep slopes and evidence of groundwater discharge	Major	Moderate
S29	18270 to 18550	Leongatha South (Ls)	Gently undulating rises	Erosivity, slopewash and hydrology	Moderate	Low
S30	18550 to 19130	Leongatha South (Ls)	Gently undulating rises	Due to uncertain ground conditions	Moderate	Low
S31	19130 to 19180	Buffalo (Bu)	Channel	Due to crossing active channel	Major	Moderate
S32	19180 to 20600	Buffalo (Bu)	Alluvial plain	Due to uncertain ground conditions	Moderate	Low
S33	20600 to 21515	Koonwarra (Ko)	Low rise	Due to possible Cretaceous rock at shallow depth	Moderate	Low

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S34	21515 to 21580	Riverine (Riv)	Channel / Narrow alluvial plains	Due to hydrology, flood and uncertain soil conditions	Moderate	Low
S35	21580 to 27500	Leongatha South (Ls)	Gently undulating rises	Due to ground conditions, multiple shallow drainage lines	Moderate	Low
S36	27500 to 27700	Leongatha South (Ls)	Rise	Due to possible Cretaceous rock at shallow depth	Moderate	Low
S37	27700 to 28470	Leongatha South (Ls)	Gently undulating rises	Due to uncertain ground conditions	Moderate	Low
S38	28470 to 28550	Riverine (Riv)	Channel	Due to hydrology, flood and uncertain soil conditions	Major	Moderate
S39	28550 to 29370	Riverine (Riv)	Alluvial plain	Due to flood and uncertain ground conditions	Moderate	Low
S40	29370 to 29450	Riverine (Riv)	Channel	Due to hydrology, flood and uncertain soil conditions	Moderate	Low
S41	29450 to 31200	Leongatha South (Ls)	Gently undulating rises	Due to uncertain ground conditions	Moderate	Low
S42	31200 to 33600	Koonwarra (Ko)	Low rises	Due to possible Cretaceous rock at shallow depth / uncertain ground conditions	Moderate	Low
S43	33600 to 34700	Koonwarra (Ko)	Low hills	Due to slope and susceptibility to slope movements, possible rock at shallow depth	Moderate	Low
S44	34700 to 34850	Powlett (Po)	Flood plain	Due to hydrology, flood and ground conditions, active migrating channel	High	Moderate
S45	34850 to 34880	Powlett (Po)	Channel	Due to hydrology, flood and ground conditions, active migrating channel	Moderate	Low
S46	34880 to 35780	Powlett (Po)	Flood plain	Due to hydrology, flood and ground conditions, active migrating channel	High	Moderate
S47	35780 to 36250	Warragul (Wg)	Ridge	Due to weathered volcanics	Moderate	Low
S48	36250 to 36580	Powlett (Po)	Alluvial plain	Due to flood and uncertain ground conditions	Moderate	Low
S49	36580 to 36620	Powlett (Po)	Channel	Due to perched channel and levees, uncertain soils	Moderate	Low
Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
------------------------	-----------------------	-----------------------------	----------------------------	---	--	--
S50	36620 to 37800	Powlett (Po)	Flood plain	Due to flood and river avulsion history, soft soil uncertainty	Major	Moderate
S51	37800 to 38200	Warragul (Wg) (Adjusted)	Low rises	Due to slope instability	Major	Moderate
S52	38200 to 38620	Warragul (Wg) (Adjusted)	Low rises	Due to low slopes in Thorpdale Volcanics	Moderate	Low
S53	38620 to 39300	Powlett (Po)	Flood plain	Due to hydrology and flood	Moderate	Moderate
S54	39300 to 39550	Leongatha South (Ls)	Gently undulating rises	Due to possible colluvial soils and trench stratigraphy	Moderate	Low
S55	39550 to 40350	Warragul (Wg) (Adjusted)	Low ridge	Due to relief and slope instability	High	Moderate
S56	40350 to 40600	Powlett (Po)	Flood plain	Due to uncertain ground conditions	Moderate	Low
S57	40600 to 40675	Powlett (Po)	Channel	Due to flood	Moderate	Moderate
S58	40675 to 41300	Strzelecki (Sz)	Rolling to steep hills	Due to relief and slope and possible shallow rock	Moderate	Moderate
S59	41300 to 43300	Strzelecki (Sz)	Rolling to steep hills	Due to uncertainty in ground conditions, stratigraphy	High	Moderate
S60	43300 to 43900	Strzelecki (Sz)	Rolling to steep hills	Due to steep slopes and adjacent scarp, uncertain nature of subsurface materials	Moderate	Moderate
S61	43900 to 44700	Strzelecki (Sz)	Rolling to steep hills	Due to soil profile uncertainty including possible shallow depth to rock	High	Moderate
S62	44700 to 45080	Strzelecki (Sz)	Rolling to steep hills	Due to soil profile uncertainty including possible shallow depth to rock plus Relief and slope	High	Moderate
S63	45080 to 45350	Strzelecki (Sz)	Rolling to steep hills	Due to soil profile including possible shallow depth to rock, relief and slope, and instability	High	Moderate
S64	45350 to 45500	Warragul (Wg)	Hills	Due to presence of landslide in Thorpdale Volcanics	Major	High
S65	45500 to 45800	Warragul (Wg)	Summit	Due to ground conditions	Moderate	Low

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S66	45800 to 45930	Strzelecki (Sz)	Rolling to steep hills	Due to uncertain slope form and stability	High	Moderate
S67	45930 to 46120	Strzelecki (Sz)	Rolling to steep hills	Due to variable surface materials Possible deeper weathering in lower slopes	Moderate	Low
S68	46120 to 46300	Warragul (Wg)	Hills	Due to steeper slopes in Thorpdale Volcanics	High	Moderate
S69	46300 to 46600	Strzelecki (Sz)	Rolling hills	Due to landslides below	Moderate	Moderate
S70	46600 to 47050	Strzelecki (Sz)	Rolling hills	Due to stability, uncertain ground condition, potential groundwater discharge	Major	Moderate
S71	47050 to 47350	Strzelecki (Sz)	Rolling hills	due to uncertain ground conditions and depth to rock	High	Moderate
S72	47350 to 47400	Strzelecki (Sz)	Channel	Due to hydrology, flood and excavatability within Strzelecki	High	Moderate
S73	47400 to 47620	Strzelecki (Sz)	Rolling hills	Due to uncertain ground conditions and depth to rock	High	Moderate
S74	47620 to 47700	Strzelecki (Sz)	Alluvial plains	Due to varied regolith and drainage. Possible colluvium	High	Moderate
S75	47700 to 48000	Strzelecki (Sz)	Rolling hills	Due to existing landslides and slope	Major	High
S76	48000 to 48300	Strzelecki (Sz)	Rolling hills	Due to uncertain regolith composition	Moderate	Low
S77	48300 to 48380	Strzelecki (Sz)	Rolling hills	Due to regolith and moderate slope	Moderate	Low
S78	48380 to 48395	Strzelecki (Sz)	Channel	Due to erosivity and regolith uncertainty, possibly soft soils and ASS	Major	Moderate
S79	48395 to 48740	Strzelecki (Sz)	Rolling hills	Due to existing landslides and slope instability	Major	High
S80	48740 to 49100	Strzelecki (Sz)	Ridge	Due to regolith and proximity to valley head	High	Moderate
S81	49100 to 49340	Strzelecki (Sz)	Rolling hills	Due to possible landslide and uncertain regolith	High	High

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S82	49340 to 49380	Strzelecki (Sz)	Channel	Due to landscape position in floodway	Major	High
S83	49380 to 49600	Strzelecki (Sz)	Rolling hills	Due to adjacent landslides and steep slopes	High	High
S84	49600 to 50000	Warragul (Wg)	Ridge	Due to regolith uncertainty	Moderate	Low
S85	50000 to 50300	Warragul (Wg)	Rolling hills	Due to existing landslide	High	High
S86	50300 to 50420	Strzelecki (Sz)	Flood plain	Due to flood, hydrology and regolith	High	Low
S87	50420 to 50510	Strzelecki (Sz)	Low ridge	Due to relief mainly	Moderate	Low
S88	50510 to 50540	Strzelecki (Sz)	Channel	Due to flood hydrology, regolith	Major	Moderate
S89	50540 to 50740	Warragul (Wg)	Undulating hills	Due to existing landslide	Major	High
S90	50740 to 50970	Warragul (Wg)	Undulating hills	Due to regolith	Moderate	Low
S91	50970 to 51300	Warragul (Wg)	Undulating hills	Due to existing slope instability and regolith uncertainty	High	Moderate
S92	51300 to 51700	Warragul (Wg)	Undulating hills	Due to regolith	Moderate	Low
S93	51700 to 52050	Warragul (Wg)	Undulating hills	Due to existing landslides	Major	Moderate
S94	52050 to 52080	Warragul (Wg)	Channel	Due to flood hydrology, regolith	Major	Moderate
S95	52080 to 52120	Strzelecki (Sz)	Ridge	due to possible slope instability	High	Moderate
S96	52120 to 52220	Strzelecki (Sz)	Ridge	Due to regolith uncertainty	Moderate	Low
S97	52220 to 52290	Strzelecki (Sz)	Ridge	Due to moderate slopes and regolith	Moderate	Low

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S98	52290 to 52340	Strzelecki (Sz)	Valley floor	Due to hydrology and flood	High	Moderate
S99	52340 to 52500	Strzelecki (Sz)	Rolling hills	Due to moderate slopes and regolith	Moderate	Moderate
S100	52500 to 52700	Warragul (Wg) Adjusted	Undulating hills	Due to possible Thorpdale and regolith	Moderate	Low
S101	52700 to 53100	Warragul (Wg)	Ridge	Due to regolith	Moderate	Low
S102	53100 to 53370	Warragul (Wg) Adjusted	Undulating hills	Due to existing slope instability and regolith uncertainty	High	Moderate
S103	53370 to 53390	Warragul (Wg) Adjusted	Valley floor	Due to hydrology and flood	High	Moderate
S104	53390 to 53500	Contact Warragul with Strzelecki	Undulating hills	Due to springs and existing slope instability	Major	Moderate
S105	53500 to 53720	Contact Warragul with Strzelecki	Undulating hills	Due to regolith	Moderate	Low
S106	53720 to 53800	Contact Warragul with Strzelecki	Undulating hills	Due to hydrology and flood	Moderate	Moderate
S107	53800 to 53900	Contact Warragul with Strzelecki	Undulating hills	Due to moderate slopes in Thorpdale	Moderate	Low
S108	53900 to 54330	Contact Warragul with Strzelecki	Ridge and undulating slopes	Due to regolith	Moderate	Low
S109	54330 to 54370	Riverine (Riv)	Channel	Due to flood and hydrology plus regolith	Major	Moderate
S110	54370 to 54770	Riverine (Riv)	Alluvial terrace	Due to regolith uncertainty, Varied in floodplain	Moderate	Low
S111	54770 to 54810	Riverine (Riv)	Channel	Due to flood, regolith erosion	Moderate	Moderate
S112	54810 to 54970	Warragul (Wg) Adjusted	spur	Due to regolith	Moderate	Low
S113	54970 to 55010	Riverine (Riv)	Channel	Due to flood and hydrology, regolith	High	Moderate

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S114	55010 to 55030	Warragul (Wg)	Undulating rises	Due to very steep slope/ escarpment and landslide	Major	High
S115	55030 to 55940	Warragul (Wg)	Undulating rises	due to undulating terrain and evidence of instability	High	Moderate
S116	55940 to 56250	Warragul (Wg)	Undulating rises	Due to regolith and landslide to the west	Moderate	Moderate
S117	56250 to 56830	Warragul (Wg)	Landslide slopes	Due to significant landslide features	Major	High
S118	56830 to 57180	Warragul (Wg)	Landslide slopes	Due to older degraded landslide and regolith	Moderate	Low
S119	57180 to 57530	Morwell with Boolarra (Mr/Bl)	Rolling low hills to undulating rises.	Due to regolith	Low	Low
S120	57530 to 57900	Morwell with Boolarra (Mr/Bl)	Rolling low hills to undulating rises.	Due to proximity to valley head	Moderate	Low
S121	57900 to 60400	Morwell with Boolarra (Mr/Bl)	Rolling low hills to undulating rises.	Due to regolith uncertainty	Moderate	Low
S122	60400 to 61100	Morwell with Boolarra (Mr/Bl)	Rolling low hills to undulating rises.	Due to proximity to gully heads	Moderate	Low
S123	61100 to 61500	Uncertain Contact Morwell with Boolarra (Mr/Bl) and Warragul	Rolling low hills to undulating rises	Due to possible landslides and uncertain regolith	High	Moderate
S124	61500 to 61530	Uncertain Contact Morwell with Boolarra (Mr/Bl) and Warragul	Channel	Due to hydrology and flood	Major	Moderate
S125	61530 to 61800	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills.	Due to slope instability	Moderate	Moderate
S126	61800 to 63500	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S127	63500 to 63600	Swamp (sw)	Swamp	Due to low lying wetland, hydrology, flood	Moderate	Moderate
S128	63600 to 64500	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to regolith and possible erosivity	Moderate	Low
S129	64500 to 65300	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope and relief and possible uncertain regolith	Moderate	Low
S130	65300 to 66530	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to regolith	Moderate	Low
S131	66530 to 66640	Silver Creek with Warragul (Sc/Wg)	Valley floor	Due to proximity to watercourse, flood and regolith	Major	Moderate
S132	66640 to 66900	Silver Creek with Warragul (Sc/Wg)	Ridge	Due to possible landslides and uncertain regolith	High	High
S133	66900 to 67030	Silver Creek with Warragul (Sc/Wg)	Channel	Due to flood hydrology and uncertain regolith	Major	Moderate
S134	67030 to 68000	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to regolith	Moderate	Low
S135	68000 to 68500	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to regolith and moderate slopes	Moderate	Low
S136	68500 to 68850	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope and proximity to gully head, groundwater outflow	Major	Moderate
S137	68850 to 69300	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope and regolith	Moderate	Low
S138	69300 to 69600	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope and proximity to gully head, groundwater outflow	Major	Moderate
S139	69600 to 70140	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to regolith	Moderate	Low
S140	70140 to 70300	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope, hydrology, and flood	Major	Moderate
S141	70300 to 71600	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope and regolith	Moderate	Low
S142	71600 to 72050	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to slope and regolith	High	Moderate

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S143	72050 to 72400	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to regolith	Moderate	Low
S144	72400 to 73700	Silver Creek with Warragul (Sc/Wg)	Rolling low hills	Due to proximity to numerous active gully heads	High	Moderate
S145	73700 to 74050	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low
S146	74050 to 74250	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low
S147	74250 to 74620	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low
S148	74620 to 74930	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to relief and slope and regolith	Moderate	Low
S149	74930 to 74980	Boolarra with Morwell (Bl/Mr)	Valley floor	Due to hydrology and flood	Moderate	Low
S150	74980 to 75230	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low
S151	75230 to 75300	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low
S152	75300 to 75450	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to possible landslide in small gully below	Moderate	Low
S153	75450 to 75750	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith uncertainty	Moderate	Low
S154	75750 to 76050	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to complex regolith stratigraphy and proximity to large landslide below	Moderate	Low

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S155	76050 to 76400	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to complex regolith stratigraphy	Moderate	Low
S156	76400 to 76530	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to slope and regolith stratigraphy plus adjacent landslide	Low	Low
S157	76530 to 77320	Yinnar (Yn) (adjusted)	Stagnant alluvial plain	Due to complex soil stratigraphy	Moderate	Low
S158	77320 to 77400	Riverine (Riv)	Alluvial plain	Due to steep slopes and soft soil, stability	High	Low
S159	77400 to 77520	Riverine (Riv)	Alluvial plain	Due to hydrology, flood, soft soils, and potential ASS	Major	Moderate
S160	77520 to 77580	Riverine (Riv)	Alluvial plain	Due to relief and slope and regolith	Moderate	Low
S161	77580 to 77680	Riverine (Riv)	Alluvial plain	Due to hydrology, flood, soft soils, and potential ASS	Major	Moderate
S162	77680 to 77740	Riverine (Riv)	Alluvial plain	Due to steep slopes and regolith	High	Moderate
S163	77740 to 77920	Riverine (Riv)	Alluvial plain	Due to regolith uncertainty	Low	Low
S164	77920 to 77950	Riverine (Riv)	Alluvial plain	Due to relief and slope and stability	Moderate	Moderate
S165	77950 to 78230	Riverine (Riv)	Flood plain and channel	Due to flood and hydrology plus regolith	Moderate	Moderate
S166	78230 to 78450	Yinnar (Yn)	Alluvial plain	Due to landslide presence	Moderate	Moderate
S167	78450 to 78870	Yinnar (Yn)	Alluvial plain	Due to complex regolith stratigraphy	Moderate	Low
S168	78870 to 78920	Yinnar (Yn)	Alluvial plain	Due to moderate slopes, regolith and hydrology	Moderate	Low
S169	78920 to 78930	Yinnar (Yn)	Alluvial plain	Due to hydrology and flood	Moderate	Low

Trench sector ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – residual (mitigated by EPRs)
S170	78930 to 78970	Yinnar (Yn)	Alluvial plain	Due to relief and slopes and regolith uncertainty/ complex stratigraphy	Moderate	Low
S171	78970 to 79040	Yinnar (Yn)	Alluvial plain	Due to complex regolith stratigraphy	Moderate	Low
S172	79040 to 79060	Yinnar (Yn)	Alluvial plain	Due to moderate slopes, regolith and hydrology	Moderate	Low
S173	79060 to 79170	Yinnar (Yn)	Alluvial plain	Due to hydrology flood and regolith	Moderate	Low
S174	79170 to 79300	Yinnar (Yn)	Alluvial plain	Due to moderate slopes, regolith hydrology	Moderate	Low
S175	79300 to 79720	Boolarra with Morwell (Bl/Mr)	Undulating low hills to rolling low hills	Due to regolith variable stratigraphy	Moderate	Low
S176	79720 to 79950	Yinnar (Yn)	Alluvial plain	Due to relief and slope and regolith uncertainty	Moderate	Low
S177	79950 to 81550	Yinnar (Yn)	Alluvial plain	Due to flood and regolith uncertainty	Moderate	Low
S178	81550 to 81730	Yinnar (Yn)	Alluvial plain	Due to nature of paleo channel and regolith	Moderate	Low
S179	81730 to 83070	Yinnar (Yn)	Alluvial plain	Due to floodplain nature, regolith hydrology and flood	Moderate	Low
S180	83070 to 83350	Yinnar (Yn)	Alluvial plain	Due to regolith uncertainty	Moderate	Low
S181	83350 to 83500	Riverine (Riv)	Alluvial plain and channel	Due to flood	Moderate	Low
S182	83500 to 85400	Uncertain Loy Yang (Ly) possible spoil.	Undulating low rises	Due to regolith uncertainty	Moderate	Low
S183	85400 to 87200	Loy Yang (Ly)	Plain	Due to complex regolith stratigraphy	Moderate	Low

Figure 6-1 Unmitigated and residual significance of impact on geomorphology and soils (Base: World Imagery 2018)

6.2.6 Significance of impact assessment for shore crossing and other infrastructure

Significance of impact assessment has been carried out for all other project components: shore crossing, Waratah Bay transition station, HDD pads, laydown areas, joining pits and the Driffield and Hazelwood converter stations.

6.2.6.1 Shore crossing

The detailed assessment of the shore crossing HDD is provided in the main table of impact assessment (Appendix A:) and summarised in Table 6-5 below.

Table 6-5 Summary of significance of impact assessment for shore crossing sectors – unmitigated and mitigated by application of EPRs

ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of Impact – mitigated / EPRs
SC1	-1100 to -450	N/A	Subtidal	Stability of landforms and erosivity within a subtidal area. Difficult conditions for HDD	Major	Moderate
SC2	-450 to -120	N/A	Intertidal	Stability of landforms and erosivity within a subtidal area. Difficult conditions for HDD	Major	Moderate
SC3	-120 to 0	Sand Dunes (sd)	Foredunes	Stability of landforms and erosivity by waves and wind	Major	High

Note: the "High" mitigated significance of impact in SC3 in Table 6-3 is based on an incident during the Basslink shore crossing HDD at McGaurans Beach, Victoria in May 2004 that resulted in four ground subsidence sinkholes and drilling fluid discharge (Enesar Consulting 2004, Environmental GeoSurveys 2004). The location is a coastal barrier and backshore depression of the Ninety Mile Beach of similar geomorphology and age to the proposed Waratah Bay crossing. Confirmation of sub-surface materials and appropriate HDD implementation is required to minimise the risk of an HDD incident occurring at this shore crossing, as required by EPRs GM01, GM02 and GM05.

6.2.6.2 Other infrastructure

All other infrastructure is located along the trench alignments. As such the significance of impact assessment given for that trench sector can be applied to the other components, given the magnitude of impact will generally be equivalent or less than for trench construction.

6.2.6.3 Driffield converter station

The converter station at Driffield has been assessed separately and is included in the main impact assessment table with the trench sectors (Appendix A:) and reproduced in summary form in Table 6-6 below. The site is the subject of a detailed geotechnical study (Jacobs 2022b).

Table 6-6 Driffield Converter Station: Summary of significance of impact assessment for trench sectors and overall converter station site – unmitigated and mitigated by application of EPRs

ID	Chainage in metres	Soil landform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of impact – mitigated / EPRs
		Boolarra with			Moderate	Low
D1	0 to 270	Morwell (Bl/Mr)	Ridge crest	Due to regolith		
D2	270 to 340	Boolarra with Morwell (Bl/Mr)	Valley slope	Due to moderate slopes and regolith variability	Moderate	Low
D3	340 to 510	Boolarra with Morwell (Bl/Mr)	Gentle valley and low ridge	Due to regolith	Moderate	Low
D4	510 to 720	Boolarra with Morwell (Bl/Mr)	Gentle valley and low ridge	Due to regolith and geology change	Moderate	Low
D5	Overall Converter Station Site	Boolarra with Morwell (Bl/Mr)	Gentle valley and low ridge	Due to regolith, geology change and groundwater proximity to cuts, significant relief and slope issue due to amount of cut and fill needed	Major	Moderate

6.2.6.4 Hazelwood Converter Station

The converter station at Driffield has been assessed separately and is included in the main impact assessment table with the trench sectors (Appendix A:) and reproduced in summary form in Table 6-7 below. No geotechnical information is available.

Table 6-7 Hazelwood Converter Station: Summary of significance of impact – unmitigated and mitigated by application of EPRs

ID	Chainage in metres	Soil Iandform unit	Broad landform description	Factors affecting sector sensitivity	Significance of impact – unmitigated	Significance of impact – mitigated / EPRs
H1	Overall Converter Station Site	Loy Yang (Ly)	Broad low hill	Due to regolith and extensive cut and fill needed	Major	Moderate

6.3 DISCUSSION OF SIGNIFICANCE OF IMPACT ASSESSMENT

The major impacts on geomorphology and soils relate to the proposed Marinus Link trench crossing landscapes that are locally steep with evidence of existing slope instability, have numerous drainage lines, areas of deeply weathered rock and unconsolidated and often complex regolith and experience locally high rainfall. The shore crossing HDD is below deep accumulations of unconsolidated coastal beach and dune sand.

The detailed assessment of the sensitivity of geomorphic attributes and magnitude of impact of the proposed project's engineering activities identified a number of sectors of the trench with potential for a high unmitigated significance of impact on geomorphology and soils. Residual impacts, assuming the successful application of EPRs, generally results in a significant reduction of these high impacts.

The potential unmitigated impacts are those that stem directly from trench excavation and other ground disturbance that:

- exposes sub-surface materials of variable strength at angles steeper than natural stable repose.
- intersects slopes that display active or incipient landslides or other forms of slope instability.
- crosses stream channels with exposed regolith on bed and banks and incised thread channels.
- alters local surface and groundwater conditions.

Design and construction methods that can be applied to accommodate these impacts are outlined in the EPRs specified in Table 6-1 in Section 6.2.2 above. These encompass a wide range of procedures including timing construction to avoid immediate and seasonal wet weather and being cognisant of groundwater levels to avoid construction in ground conditions of standing or flowing surface water and soil saturation. A program must be developed for inspection of excavations during construction. The purpose of these inspections is to confirm that trenches are excavated in accordance with AS 3798-2007 *Guidelines on earthworks for commercial and residential developments, and the Best Practice Erosion and Sediment Control Guidelines* (IECA 2008), and in a manner that results in long-term stability.

When carrying out the design, consideration should be given to loading imposed on the open trench. Such loading may be associated with construction traffic or may be imposed by pre–existing structures such as buildings, fills, roadways. Mobile equipment and other construction material stored close to the trench also add a surcharge that will affect trench stability and must be avoided. Powered mobile plant should not operate or travel near the edge of an excavation unless the ground support system installed has been designed to carry such loads. Physical barriers, such as wheel stoppers, can be one way of restricting plant movement near an excavation. Spoil from excavation should be managed to avoid undue ground loading near excavations and covered to avoid rainwash dispersal. Drainage measures must be implemented to prevent surface runoff into excavations, cause local inundation or initiate slope-soil wash.

Site investigation by a geomorphologist, including collection of sub-surface cores down to at least trench/HDD depth in order to determine stratigraphy, of the 13 sectors of high residual impact is recommended to inform project design, including choice of construction methods. If site investigation reveals that ground conditions are unsuitable for construction or construction activities might impact slope stability or existing or potential landslides (i.e., geomorphic stability cannot be assured through design and application of EPRs), realignment is recommended in those sectors.

A summary of the assessment results for both unmitigated and those with EPRs applied (residual impact) is shown in tables Table 6-8 and Table 6-9 below.

 Table 6-8
 Unmitigated significance of impact

Area	Unmitigated signific	Unmitigated significance of impact assessment – number within each area														
	Major	High	Moderate	Low												
Shore Crossing	3	0	0	0												
Main Alignment	32	34	114	3												
Driffield/Hazelwood Offtake	2	0	4													

Table 6-9 Residual significance of impact

Area	Residual significant	ce of impact assessm	ent – number within (each area
	Major	High	Moderate	Low
Shore Crossing	0	1	2	0
Main Alignment	0	12	66	105
Driffield/Hazelwood Offtake	0	0	2	4

7. CONCLUSION

This technical report presents the results of a desktop assessment of existing conditions of geomorphology and soils for the shore crossing and terrestrial component of the project in Victoria. The project crosses a varied landscape with reaches of gently undulating low elevation terrain alternating with dissected elevated hillslopes with close-spaced drainage lines and moderate to locally steep slopes. There is minimal rock outcrop, and the surface has a continuous soil cover over a regolith of decomposed rock typically metres thick. Many slopes, notably with an underlying geology of weathered Cenozoic basalt and thick colluvium display landslides and other forms of slope instability. The upper reaches of many drainage lines are flanked by alluvium with groundwater outflow as the channel source. The shore crossing is an area of unconsolidated subaqueous and subaerial beach backed by unconsolidated dune sand and relict tideway sediments.

The desktop study identified four groups of existing slope instability: landslides, slope mass movement, channel incision, gully heads.

The potential impacts of the project on geomorphology and soils were evaluated using a significance of impact approach. The highest initial impact occurs due to the 1.5 m deep excavations for the two cable trenches, several HDD tunnels, and cable joint pits at nominal intervals of between 800 m to 1200 m along the alignment which will include buried infrastructure to 3 m below ground surface.

Using the 192 trench sectors as the basic landform unit, the initial desktop assessment of unmitigated construction impact of identified:

- 37 sectors of major impact
- 34 sectors of high impact
- 118 sectors of moderate impact
- 3 sectors of low impact

EPRs were developed to address the potential impacts from construction of the project. An assessment of residual impact after application of the EPRs identified:

- 13 sectors of high impact
- 69 sectors of moderate impact
- 105 sectors of low impact

As stated previously, this technical report is a desktop study only. In consequence, details of ground conditions are uncertain and inferred from the remote sources and literature cited. This is a considerable constraint as the existing status of surfaces and subsurface of areas identified as landslides or other forms of slope instability has not been verified.

It is concluded that the engineering activities of the project without mitigation has the potential for major, high, and moderate impact on much of the terrain which has a number of significantly sensitive geomorphic attributes. This residual impact can be reduced and managed to varying degrees by applying appropriate design, construction, and operational strategies implemented to comply with the EPRs.

Site investigation by a geomorphologist (including collection of sub-surface cores down to at least trench/HDD depth to determine stratigraphy) of the 13 sectors of high residual impact is recommended to inform project design, including choice of construction methods. If site investigation reveals that ground conditions are unsuitable for construction or construction activities might impact slope stability or existing or potential landslides (i.e., geomorphic stability cannot be assured through design and application of EPRs), realignment is recommended in those sectors.

Unforeseen events (e.g., landslides) will be covered in EIS/EES Volume 5, Chapter 2 – Environmental Management Framework.

8. REFERENCES

Alluvium (2022). Marinus Link – Victorian Surface Water Impact Assessment. P119284 report R03V02 prepared by Alluvium Consulting Australia for Tetra Tech Coffey, Victoria.

AGS. (2007). Commentary on practice note guidelines for landslide risk management. Australian Geomechanics, 42(1), 115-158.

Cavallin, A., Marchetti, M., Panizza, M. and Soldati, M., (1994). The role of geomorphology in environmental impact assessment. *Geomorphology*, 9: 143-153.

Cooke, R.U. and Doornkamp, J.C. (1990). *Geomorphology in Environmental Management.* 2nd Edition, Oxford University Press, Oxford.

Enesar Consulting Pty Ltd (2004). Basslink Project Victorian Shore Crossing Disturbance to Coastal Dunes Incident Report. Report prepared for Pirelli Cavie Systemi Energia S.p.A.

Environmental GeoSurveys (2004). Basslink project Victorian shore crossing, subsidence of coastal dunes, geomorphological review – preliminary report. Report prepared for Enesar Consulting Pty Ltd

Geological Survey Victoria (2014). *Victoria – Seamless Geology 2014*. Product Code: MP-M-106616 DVD dataset Shapefile.

Gibson, G. and Brown, A. (2003). Earthquakes – linking today's tectonics with geological history and structure. Pp. 593-602 In Birch, W. (ed). *Geology of Victoria* Special publication Geological Society of Australia; 23, Geological Society of Australia (Victoria Division).

Jacobs Group (Australia) Pty Limited (2019). - Ground Conditions Assessment, Victorian Cable Route SO12. Revision 0.

Jacobs. (2021). Project Marinus – Technical, Engineering and Project Management Services SO12 – Ground Conditions Assessment, Victorian Cable Route.

Jacobs Group (Australia) Pty Limited (2022a). Ground Conditions Factual Report –Victorian Route Tranche 1 Document no: IS360357-SO57-CG-RPT-0006.

Jacobs Group (Australia) Pty Limited (2022b). Interim Geotechnical Interpretive Report – Victoria Route Phase 1 Rev A. Unpublished report prepared for Marinus Link Pty Ltd

Jacobs Group (Australia) Pty Limited. (2022c). Driffield site investigation – Geotechnical interpretive report. Reference: IS360343-SO43-CGRPT- 0007.

Jacobs Group (Australia) Pty Limited (2023a). Project Marinus - Technical, Engineering and Project Management Services. SO79 - Ground Conditions Report, Victorian Cable Route. Unpublished report prepared for Marinus Link Pty Ltd SO57 No 1, 31 May 2023.

Jacobs Group (Australia) Pty Limited (2023b). Landslide Susceptibility Assessment: Marinus Link Victorian Land Route: Project no: IS360396

Katestone (2023). Marinus Link: Climate and Climate Change Assessment. Prepared by Katestone Environmental Pty Ltd for Tetra Tech Coffey.

McCue, K. (2015). Historical earthquakes in Victoria: A Revised List. Australian Earthquake Engineering Society, Articles Published www.aees.org.au.

McNeill, Joanne; MacEwan, Richard; Crawford, Doug. (2007). Using GIS and a land use impact model to assess risk of soil erosion in West Gippsland. *Applied GIS* 2 (3): pp. 19.1–19.16.

Rivas V., Rix K., Frances E., Cendrero A., Brunsden D. (1997). Geomorphological indicators for environmental impact assessment: consumable and non-consumable geomorphological resources. *Geomorphology* 18: 169–182.

Sargeant, I. and Imhof, M. (2003). Soils and Landforms of West Gippsland 1:100 000 mapsheets. Department of Primary Industries, Victoria.

Slotnick, A. (2022). Climate Change and the Strzelecki Koala. Friends of the Earth Melbourne.

Smith, A. (1969). The geomorphology and evolution of Shallow Inlet, Victoria. B.Sc Hons. thesis, University of Melbourne. (unpub).

Tetra Tech Coffey (2022). Groundwater Impact Assessment Marinus Link. Report reference number: 754-MELEN215878ML 16 December 2022.

Wedrowicz, F., Wright, W., Schlagloth, R., Santamaria, F., & Cahir, F. (2017). Landscape, koalas and people: A historical account of koala populations and their environment in South Gippsland. *Australian Zoologist*, 38(4), 518-536.

West Gippsland Catchment Management Authority (2008). West Gippsland Soil Erosion Management Plan. Report prepared by M. Dortmans, G. Pomeroy, J. Wallis, D. M. Crawford, J. McNeill, N. Dudley: for West Gippsland Catchment Management Authority.

APPENDIX A: SIGNIFICANCE OF IMPACT ASSESSMENT DETAILS

	or determining Rusidual Import offer EPT's and other comments		g HDD	ig HIDD nied geotechnical investigation and stability analysis required to		is taken with ASS needed Bila onderslimmarks on he confirmed	Doministration of the second se	re stope stability	sider HDD as better alternative	vds landslide assessment and detailed geo investigation firm slope stability - Landslide assessment	e needed crossing guily heads -landslide assessment	iertake landslide åssessment to connirm conditions sider extending HDD för entire sector	ertain ground conditions need confirming - landslide assessment	sider HDD as a better alternative	g HDD under veg and watercourse	ng HDD firm groundwater discharges	sider HDD as a better alternative	gHDD	ttiple watercourse crossings	sider HDD as a better alternative HDD under roads	ng HDD • under road and creek	/partial HDD ∉ HDD	tai HDD film slope stability in Thorpdale constantion	y partial muu 1g HDD 1a HDD under road	ds further landslide assessment		g HDD stly HDD but some trenching · under mad	stly HDD but some trenching- needs further landslide assessment ile uncertainty to be resolved	water courses and steep supe firm shallow slope instability-landslide assessment ds landslide assessment and detailed ge o investigation		ds landslide assessment stly HDD above slide id valley head with groundwater discharge?/ landslide assessment		ds landslide assessment and detailed geo investigation	sider HDD as a better alternative ds further landside assessment and investigation. Consider HDD	ds landslide risk assessment . Consider HDD as better alternative sider HDD as a better alternative	ds landslide risk assessment . Consider HDD as better alternative	eds landslide assessment and detailed geo investigation	ds landslide assessment and detailed geo investigation	ds landslide assessment	eds andslide assessment to comirm sider HDD as a better alternative ds landslide assessment	sider HDD as a better alternative	talHDD	
	tooqmi to ອວກຄວາໃງເຄຍູເຊັ batagitiiM ກິດສານ	,	derate Usin	derate Usin Detr	2007	derate care derate Doce	v v derate Alre	Ensi	derate Con	derate Con	Care	v Con	Uno U	v derate Con	Usin	v Usin derate Con v	v derate Con	Usin	Mut	derate Con		v derate Only v Usin	derate Part	v Usin derate Part	derate nee v derate	v derate v	derate Usin derate Mos derate HDD	derate Mos derate Prof	derate Con h Nee	v derate v	derate nee derate Mos derate Bros	derate derate derate	derate h v	v derate Con h Nee	derate h Nee h	h Nee	Nee	derate h Nee	derate Nee	derate Nee derate Con derate Nee	v v derate Con	derate v Part	derate
	toqmi fo sbutingaM bstagitiM	,	or Mo	1or Mo	and are	Tor Mo	1or Lov 1or Lov 3ligible Mo	10r 10v 10v 10v	or Mo sor Lov	derate Hig vor Mo	70r 10v 10v	201 100 201 LOV 201 LOV	NOT LOV NOT LOV	1or Lov 1or Mo	Tor Lov	pligible Lov nor Mo nor Lov	1or Lov	nor Lov Jigible Lov	101 LOV	oor Mo	pigible Lov nor Lov nor Lov	1or Lov 1or Mo Diaible Lov	or Lov	pligible Lov	Nor Mo Nor Lov Nor Mo	NOT LOV NOT LOV	pligible Mo oor Mo oor Mo	aor Mo	aor aor derate <mark>Hig</mark>	aor Lov aor Mo aor Lov	aor Mo aor Mo aor Mo	or Mo or Mo or Mo	1or Mo derate <mark>Hig</mark> 1or Lov	10r Lov 10r Mo derate <mark>Hig</mark>	oor Mo derate <mark>Hig</mark> derate His	derate Hig	derate <mark>Hig</mark> 201 Lov 101 Lov	oor Mo derate <mark>Hig</mark> oor Lou	201 Mo	vor Mo vor Mo vor Mo	pligible Lov Tor Lov Tor Mo	oor Mo	or Mo
	tooqmi lo sbutingoM bstopitimaU	7	iere Mii	iere Mi	owi ara	jor Mi derate Mi	derate Min derate Min nor Nev	derate Mii derate Mii derate Mii	ijor Mii derate Mii	ijor Mo ijor Mi	derate Min	ijor ivili iderate Mii derate Mii	iderate Mii ijor Mii iderate Mii	iderate Mii iderate Mii iderate Mii	derate Mi	nor Ne ijor Mii iderate Mii	iderate Mii ijor Mii	iderate Mii nor Nei	iderate Mii iderate Mii iderate Mii	ijor Mii derate Mii	nor Ne Iderate Mii Iderate Mii	iderate Mii iderate Mii nor Nei	iderate Mii iderate Mii	nor Ne	ijor Mii iderate Mii iderate Mii	derate Mii jor Mii derate Mii	nor Nej nor Mii iderate Mii	nor Mi iderate Mi	iderate Min jor Mo	derate Mii derate Mii derate Mii	iderate Mii nor Mii ijor Mii	iderate Mii iderate Mii iderate Mii	iderate Mii jor Mo iderate Mii	iderate Mii ijor Mii ijor Mo	iderate Mii iderate Mo ior Mo	derate Mo	iderate Mo ijor Mii derate Mii	ijor Mii ijor Mo iderate Mii	derate Mil	ijor Mii ijor Mii iderate Mii	nor Ne Iderate Mii Iderate Mii	iderate Mii iderate Mii iderate Mii	derate Mi
	j Binlonmentol Performance Requirements (asper		A05 Sev	405 Ser	2010 2017	102,GM03,GM04, GM06,GM08, GM09 Mc 107 GM04, GM05, GM08, GM08 Mc	00,2,500,4,600,6,500 10,2,600,4,600,6,500 10,2,600,4,600,6,600 105,5,600 105,5,600 105,5,600 105,5,000	102,GM/04,GM/06,GM/08,GM/09 102,GM/03,GM/04,GM/06,GM/08 102,GM/04,GM/06,GM/07,GM/08	02, GM03, GM04, GM06, GM07, GM08, GM09 02, GM04, GM06, GM08 02, GM04, GM06, GM08	02,GM04,GM06,GM07,GM08 02,GM04,GM06,GM07,GM08 02,GM04,GM06,GM07,GM08	002,GM04,GM05,GM02,GM02,GM02 002,GM04,GM05,GM08,GM09 002,GM04,GM05,GM07,GM08,GM09 002,GM04,GM05,GM07,GM08,GM09	ณะ, เฉพบส, เฉพบธ, เฉพบร, เฉพบร เอว, GM04, GM06, GM08 เอว, GM04, GM05, GM06, GM07, GM08, GM09	102,GM04,GM06, GM08 702,GM04,GM06, GM07, GM08,GM09 102,GM04,GM06, GM08	102,GM04,GM06,GM08 A02,GM04,GM06,GM07,GM08,GM09 M0 A440 A400	002,GM04,GM05, GM06, GM09 02,GM04,GM05, GM06, GM09 02,GM04,GM05, GM06, GM08	405,GM09 102,GM03,GM04,GM06,GM07,GM08 002,GM03,GM04,GM06,GM07,GM09 002,GM03,GM04,GM06,GM07,GM09 002,GM03,GM04,GM06,GM07,GM09	102,56M04,54M06,56M08 002,56M04,56M06,56M08,56M09 002,56M04,56M05,56M07,56M08,56M09	00,5M04,5M06,5M08 02,5M04,5M06,5M08 05,5M09	102, GM03, GM04, GM06, GM08, GM09 102, GM03, GM04, GM06, GM08 102 GM03, GM04, GM06, GM08	02,GM04,GM06,GM08,GM09,GM09 002,GM04,GM06,GM08,GM09 002,GM04,GM06,GM08	005,GM09 102,GM04,GM06,GM08 102,GM04,GM05,GM06,GM08	102, GM03, GM04, GM06, GM07, GM08 102, GM03, GM04, GM05, GM06, GM08 M05, GM09	102,5M04, 5M05, 5M06,5M08, 5M09 102,5M04,5M06,5M07,5M08 002,5M04,5M06,5M07,5M08	00, GM09, GM04, GM05, GM06, GM08, GM09 M02, GM03, GM04, GM05, GM06, GM08, GM09 M02, GM09, GM05, GM06, GM09, GM09	02,GM04,GM06,GM07,GM08 102,GM04,GM06,GM07,GM08 102,GM04,GM06,GM08,GM09	102,GM03, GM04,GM06, GM07, GM08 102,GM04,GM06, GM07, GM08 102,GM04,GM06, GM08, GM09 102,GM04,GM06, GM08, GM09	ND5, GM09 102, GM04, GM05, GM06, GM07, GM08 102, GM04, GM05, GM06, GM07, GN08	02, GM04, GM05, GM06, GM07, GM08 02, GM04, GM06, GM08 002, GM04, GM06, GM08	002,GM04,GM06, GM07, GM08, GM08, GM08, GM08, GM08, GM07, GM08, GM07, GM08, GM0	00, GM04, GM06, GM07, GM08 002, GM04, GM06, GM07, GM08 002, GM03, GM04, GM06, GM07, GM08, GM09 M0	02,GM04,GM06, GM07, GM08 02,GM04,GM05, GM06, GM07, GM08 002,GM04,GM06, GM07, GM08, GM09	102,GM04,GM06, GM07, GM08 102,GM04,GM06, GM08, GM09 102,GM04,GM06, GM07, GM08	102,GM04,GM06,GM08,GM09 102,GM04,GM06,GM07,GM08 102,GM04,GM06,GM08	102,GM04,GM06, GM07, GM08 102,GM04,GM06, GM07, GM08, GM09 602,GM04,GM06, GM07, GM08, GM09 702,GM04,GM06, GM07, GM08, GM09	003, GM02, GM04, GM06, GM07, GM08 002, GM04, GM06, GM07, GM08 002, GM04, GM06, GM07, GM08, GM09	02,GM04,GM06, GM07, GM08 02,GM04,GM06, GM08 02	103, GM02, GM04, GM07, GM07, GM08, GM09 Mc 102, GM04, GM06, GM07, GM08, GM09 002, GM09 000 102, GM04, GM06, GM07, GM08	002,GM04,GM06, GM07, GM08 002,GM04,GM06, GM07, GM08 002,GM04,GM06, GM07, GM08	002,GM04,GM05,GM07,GM08 002,GM04,GM05,GM08,GM08 002,GM04,GM05,GM08,GM08	NU, SMU4, SMU4, SMU7, SMU8 002, GM04, GM05, GM07, GM08, GM09 002, GM04, GM06, GM07, GM08	105 102,GM04,GM06, GM07, GM08 102,GM04,GM06, GM07, GM08, GM09 Mc	102,GM04,GM05, GM07, GM08 102,GM04,GM05, GM07, GM08 102,GM04,GM05, GM07, GM08	02,GM04,GM06,GM07,GM08 Mc
	Standord Scorod deemining arativity of sector Coffyy Lis		Stability of landforms and erosivity within a subtidal area. Difficult conditions for GM01, GN	Stability of landforms and erosivity within a subtidal area. Difficult conditions for HDD	nuwan wawaa kuwaa wa subana wa	Inundation, surface flows and soft soils. Patential ASS [GM01,GW Benorith kenklitur and oth unconvected rated cails	ng sain manang mita-parakanangang mita-parakanangan Regatih matasif sais, possibé warenagging Keyatih warasif sais, possibé materiaging ShADLGN (NADLGN) Prevy seep sided Anomel and safit materials ShADLGN (SNADLGN)	Regalith and soft soils Paterind provindue soil stratigraphy including gravel Paterind provindue soil stratigraphy including gravel Rowalmy to the drainage line below	Mainy to do with drainage and floading/ sufface flows. Base of a drainage line GM01.GN Patential for variable sul stratbarabh including aravel	Complex terrain and uncertainty as to spatial extent of slope movement GM01, GN Uncertain geology and geological structure, evidence of slope instability GM01, GN	ourse endy anony a part of 6700 GM01,504 PM01,000 GM01,504 PM01,504 PM01,50	Nasectea Unasozo No significant attrabutes Mainy due to fload and hydralogy plus erosivity GM015GN	Due to uncertainty in ground conditions GM01.GW Possible slope incidentity and uncertain ground conditions GM01.GM Due to uncertainty in ground conditions GM01.GM	Due to uncertainty in ground conditions GM01,GN Due to incised channel and hydrology / flood GM01, GN underconnad criticannel of the set	Due to uncertain ground conditions GN05,50 vegetation GN05,50 vegetation	Due to flood and steep channel banks Steep stopes and evidence of guardwarder discharge Ensivity, chowevach and holdin bow (6M01.5G)	Due to uncertain ground canditions Oue to uncertain ground canditions Due to conseng partie change (6003, 6)	Due to presei dura cuantoro. Due to presei dura cuantoro. GMO 5,6N Due to hydrology, flood and uncertain soit conditions GMO 1,6N	Due to ground conditions, multiple shallow drainage lines Due to posible Createrous of est shallow depth Due novemin crumedrin draindrions	Due to hydroxina, food and uncertain sail conditions Due to flood and uncertain ground conditions Due to flood and uncertain ground conditions	Due to mparology, food and uncertan soir covarioons Due to uncertain ground canafut Due to possible Creteraeous rock at shallow depth /uncertain ground conditions GM0 1,GN	Due to stope and succeptibility to possible stope movements, possible Cretoxeous rd GN01,GN Due to hydrology, floba dangenuatic confistors, scitve materian expanse (GN01,GN Due hydrologov, floba dand acound conditions, active materian extense	Due to hydrology, flood and ground conditions , active migrating channel GM01,GW Due to weater end volcania Due to weater end volcania	Due to product uncertainty product contractions of the second and an articular solids of the second and reversal and solid solid bue to fload and river avuidion history, soft solid uncertainty GM01,GN GM01,GN	Due to stope instability GM01.GN Due to low slopes in Thompade Volcanics GM01.GN Due to thyridicary and fload	Due to possible colluvid soils and trench stratigraphy (RMD, GN Due to possible colluvid soils and trench stratigraphy (RMD, IGN Due to trenchaig round conditions (RMD, IGN	due to flood Due to relejand Stope and possible shallow nack Due noverstaint un narvand conditions. strationable	Due to steep slopes ond adjacent scorp. uncertain nature of subsurface materials (rf GMO1, GN Due to soil profile uncertainty including possible shallow depth to rock GMO1.GN	bue to say injointe aver tunning in allowing passable sources var on the trans neural or forwustion Due to say in profile induning passable sources depth to rock plus Relief and slope, and RMMS, RA Due to presence of landstide in Thorpable Volcanics	Due to groun controns to account on a stability (NMU,LIV) and a stability (NMU,LIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface surface materials Passible deeper weathering in lower slopes (SMU,GIV) bue to variable surface materials Passible deeper weathering variable surface materials	Due to streper's does in Thonpole V dicanics Due to ionacidate barrow of the Monta (A 1004), 6(Due to ionacidate bertoin ground condition, patential groundwater discharge (6/N01, 6).	due to uncertain ground conditions and depth to rock GM0.5(N Due to hydrology), fload and extraverability within Strzelecki GM0.15(N Due to unsertain ground conditions and depth to rock GM0.5(S	Due to varied regulth and drainage. Possible colluvum Due to existing Iodáldes and sope Due to existing Iodáldes and sope GMO1,GN	Due to regolith and moderate stope Due to reasivity and regolith archarding, possibly soft salis and ASS GM0.5(N Due to evalvity and regolith archarding, possibly soft salis and ASS GM0.5(N Due to evalvity and sade and stope instability	Due to regolith and provimity to valley head Due to possible bandside and uncertain regolith Due to possible bandside and uncertain regolith	Due to adjacent londslides and steep slopes Due to regolith uncertainty Oue to regolith uncertainty	Due to existing londside GM01.GN Due to flood, hydrology a and regolith GM01.GN Due to freefmainy (GM01.GN	Due to froad hydrology, regalith GM01,GN Due to existing and slide GM01,GN Due to existing and slide GM01,GN	Due to response Due to response Due to response Due to response	Due to parality and waraniny and possible fanasiaes (MMU, IA) Due to fand hydralogy, regolith due to possible slope instability (GMO1, GN	Due to regolith uncertainty GM015(N Due to moderate slopes and regolith GM015(N Due to involvioux and interval and a GM015(N	Due to moderate slopes and regalith Due to possible Thorpdale and regalith Due to possible Thorpdale and regalith	Due to existing slope instability and regalith uncertainty GM01, GN
			Major	Major	Majar	Major Hich	Moderate Moderate Moderate	Moderate Moderate Moderate	Major Moderate	Major Major	Moderate Moderate	Major Moderate Moderate	Moderate High Moderate	Moderate High	Moderate	Moderate Major Moderate	Moderate Major	Moderate Moderate	Moderate Moderate Moderate	Major Moderate	Moderate Moderate Moderate	Moderate High Moderate	High Moderate Moderate	Moderate Major	Major Moderate Moderate	Moderate High Moderate	Moderate Moderate Hiah	Moderate High	High Major	Moderate Moderate	High Moderate Major	High High High	High Major Moderate	Moderate Major Major	High High Maior	High Moderate	high High Moderate	Major Major Modemte	Moderate Moderate	Major Major High	Moderate Moderate Hiah	Moderate Moderate Moderate	High
	Geology (1,230K GSV morphety)		<u>8</u>	ES	ca aosta anne oeposits (4011); generic	coastal lagoon deposits (Og): generic ES	coostal regions exposits (Gap); generic/colluvium(Oc1); g 5 coastal lagoon deposits (Gap); generic/colluvium(Oc1); g 5 coastal lagoon deposits (Qap; generic/colluvium(Oc1); g 5 Haunted Hills Formation(N M); generic/alluvial terrace dE5	generic/colluvium(Qc 1); generic/Haunted Hills FormatidS Haunted Hills Formation(NIh); generic Haunted Hills Formation(NIh); generic	Haunted Hills Formation(NIh); generic ES Haunted Hills Formation(NIh); generic S	Haunted Hills Formation (NIh); generic ES Uptrop Formation(DM); generic VS	Haunted Hills Formation (Nh); generic 5 Haunted Hills Formation (Nh); generic 5 S	Haumed Hills Formation(Nh); generic VS Haunted Hills Formation(Nh); generic S Haunted Hills Formation(Nh); generic S	Haunted Hills Formation(Nh); generic 5 Haunted Hills Formation(Nh); generic 5 Haunted Hills Formation(Nh); generic 5	alluvial terrace deposits(Qa2); generic 5 alluvial terrace deposits(Qa2); generic V5 alluvial terrace deposits(Oa2); generic	alluvial terrace deposits (Qa2); generic/ alluvium(Qa1); S Haunted Hills Formation(NIII); generic/ alluvium(Qa1); S	Wonthoggi Formation(Ksw): generic Wonthoggi Formation(Ksw): generic Wonthonai Formation(Ksw): anew ric/ alluvium(Oat): ael S	alluvium (QQ1); generic/ Wonthoggi Formation(Ksw); ge S alluvial terrace deposits(QQ2); generic V5	anuvariende depositor (ac.), generic, Haunted Hills Formation(NIh); generic/ alluvium(Qa1); 5 offuvium(Qo1); generic	Wonthoggi Formation (Ksw): gene ic Wonthoggi Formation (Ksw): gene ic Wonthonoi Formation (Ksu): gene ic	olluvium (add): generic olluvium (add): generic S S	Wonthaggi Formation(Ksw): generic Wonthaggi Formation(Ksw): generic Wonthaggi Formation(Ksw): generic 5	Wonthoggi Formation(Ksw): generic S alluvium(Qa1): generic VS alluvium(Oa1): eeneric VS	olluvium(001); generic Thorpdale Volcanic Group (-Put); Generic Streaded Volcanic Group (-Put); Generic	marpowe vorante Group (+***); Generic / anuvurni (44.5 alluvium(Qa1); generic / Tharpdale Valcanic Group (+Put VS alluvium(Qa1): generic / Tharpdale Valcanic Group (+Put VS	Thorpdale Volcanic Group (-Put): Generic ES Thorpdale Volcanic Group (-Put): Generic S Thorpdale Volcanic Group (-Put): Generic / alluvium(Qa1 VS	alluvium(Qa1); generic alluvium(Qa1); generic /Thorpdale Volcanic Group (-Put VS alluvium(Qa1); generic	Wonthaggi Formation (Ksw): gene ic ES Wonthaggi Formation (Ksw): gene ic VS Wonthaari Formation (Ksw): aene ic VS	Wonthoggi Formation (Ksw): generic VS Wonthoggi Formation (Ksw): generic VS	wonnogy ronmount.csw: genera Wonthoggi Formation(Ksw): generic VS Thorpdale Volcanic Group (-Put): Generic ES	inorpoae voicanic Group I-Puly: Generic 5 Wonthoggi Formation (Ksw): gene ric VS Wonthoggi Formation (Ksw): gene ric 5	Thorpdale Volcanic Group (-Put): Generic VS Wonthaggi Formation(Ksw): generic VS Wonthaggi Formation(Ksw): generic VS	Wonthaggi Formation(Ksw): generic VS Wonthaggi Formation(Ksw): generic VS Wonthaggi Formation(Ksw): generic VS	Wonthoggi Formation(Ksw): generic VS Wonthoggi Formation(Ksw): generic ES Wonthoggi Formation(Ksw): generic S	Wonthaggi Formation(Ksw): generic Wonthaggi Formation(Ksw): generic Wonthaggi Formation(Ksw): generic/Thorpdale Volcanic ES	Thorpdale Volcanic Group (-Put): Generic VS Wonthoggi Formation (Ksw): generic VS Wonthonai Formation (Ksw): aeneric VS	Wonthaggi Formation (Ksw): generic/Thorpdale Volcanic VS Thorpdale Volcanic Group (-Put): Generic S	Thorpdale Volcanic Group (-Put): Generic / Wonthaggi Fal VS Wonthaggi Farmation(Ksw): generic Wonthaggi Farmation(Ksw): generic	Wonthaggi Formation (Ksw): gene ric VS Thorpdale Volcanic Group (-Put): Generic ES Thorodale Volcanic Group (-Put): Generic S	Thorpdale Volcanic Group (-Put): Generic VS Thorpdale Volcanic Group (-Put): Generic S VS	inorpoae voicanic Group I-Puty: Generic ES Thorpdale Volcanic Group (-Put): Generic VS Wonthaggi Formation(Ksw): generic VS	Wonthaggi Formation(Ksw): generic S Wonthaggi Formation(Ksw): generic S Wonthaaai Formation(Ksw): generic VS	Wonthaggi Formation (Ksw): generic 5 Thorpdale Volcanic Group (-Put): Generic 5 Thorodale Volcanic Group (-Put): Generic 5	Thorpdale Volcanic Group (-Put): Generic
	Geddoy' (1,100K soll mupping)				Pressoone to recent actual securation	Recent marine sediments. I are Disincome to Recent allingium and collingium derived from the Gin	Tertiary sectorers a recommensation of the the Mount Hordier Range Late Plestocene is Recent allwirum and collivium derived from the Gp Late Plestocene is Recent allwirum and collivium derived from the Gp	Late Pleistocene to Recent alluvium and colluvium derived from the Gip Late Pleistocene to Recent alluvium and colluvium derived from the Gip Mostly Tertiary sediments, some Early Pleistocene sediments	Mostly Tertiary sediments, some Early Pleistocene sediments Mostly Tertiary sediments, some Early Pleistocene sediments	Mostly Tertlary sediments, some Early Pleistocene sediments Mostly Tertlary sediments, some Early Pleistocene sediments	Mosty fortiary sectionance, some cary Pleistocene sectiments Mostly Tertiary sectiments, some cary Pleistocene sectiments Mostly Tertiary sectiments, some cary Pleistocene sectiments	wosty i entrary sediments, some carry reasociane sediments Mostly Tentiary sediments, some Early Plaistocene sediments Mesozoic sediments (Cretaceous) - consisting of sandstones, sitstone	Mostly Tertitary sediments, some Early Pleistocene sediments Mostly Tertiary sediments, some Early Pleistocene sediments Mostly Tertiary sediments, some Early Pleistocene sediments	Pleisboene to recent alluvium Pleisboene to recent alluvium Diviendonnom do cocord alluvium	Mostly Tertiary sediments, some Early Plaistocane sediments Recent to Plaistocane alluvial sediments, mostly derived from the basa	Recent to Pleistocene alluvial sediments, mostly derived from the basal Mesozoic sediments (Cretaceous) - consisting of sandstones, sitistone Tertiary and Early Pleistocene sediments	Tertiary and Early Plestocene sediments Pleistocene to recent alluvium Diariophone to concert alluvium	reasource to recommend autorum Resezotic sediments (Cretazeous) - consisting of sandstones, silistone Recent (contemporary) altivium sediments deposited by various stream	Tertiary and Early Pleistocene sediments Tertiary and Early Pleistocene sediments Tertiary and Early Pleistocene sediments	Recent (contemporary) aluvium sediments deposited by various stream Recent (contemporary) aluvium sediments deposited by various stream	Recent (contemporary) atuvium sediments deposited by various stream Tertiary and Earty Pleistocene sediments Mesozoic sediments (Cretaceous) - consisting of sandstones, sitstone	Mesozoic sediments (Cretaceous) - consisting of sandstones, sitstone Recent alluvium, mosty derived from the Cretaceous hills to the north Recent alluvium, mostly derived from the Cretaceous hills to the north	Recent alluvium, mostly derived from the Cretaceous hills to the north Mid-Tertitary basatits commonly called "Older Volcanics" Bocord allumium model from the Volcanica	Recent aurwhun, mosty derived rion the volatios Recent allwhum, mosty derived from the Cretaceous hills to the north Recent allwhum, mosty derived from the Cretaceous hills to the north	Mid-Tertiary basalts commonly called "Older Volcarics" Mid-Tertiary basalts commonly called "Older Volcarics" Recent alluvium, mostly derived from Thorpdale Volcanics	Tertiary and Early Pleistocene sediments Mid-Tertiary basafts commonly called "Older Volcanics" Recent alluvium, mostly derived from the Cretaceous hills to the north	Recent alluvium, mostly derived from the Cretaceous hills to the north Cretaceous sediments (sandstone, sillstone and mutstone). Cretaceous sediments (sandstone, sillstone and mutstone).	Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	oreaceute securitema (antivatoria; anisotra en la mudatoria). Cretaceous sediments (sandstone, silistone and mudatone). Mid-Tertiary basaits commony called "Older Volcanics"	MICI-I ertrary basaris commony cared "Under Volcances" Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	Mid. ⁺ Tertiary basaits commonly called "Older Volcanics" Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone), Cretaceous sediments (sandstone, silistone and mudstone), Cretaceous sediments (sandstone, silistone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	Cretaceous sediments (sandstone) silistone and mudstone). Cretaceous sediments (sandstone) silistone and mudstone). Cretaceous sediments (sandstone) silistone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone). Mid-Tertiany basalts commonly called "Older Volcanics"	Mid-Tertiary basalts commony called "Older Volcanics" Cretaceous sadiments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone). Mid-Tertiary basalts commonly called "Older Volcanics" Mid-Tertiary basalts commondy called "Older Volcanics"	Mid-Tertiary basalis commony called "Older Vocanics" Mid-Tertiary basalis commonly called "Older Vocanics" Mid-Tertiary basalis commonly called "Older Vocanics"	Mer.I eruary basaits commony called "Dider Violcanics" Mid-Tertiary basaits commony called "Older Volcanics" Cretaceous sediments (sandstone, sillstone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone). Cretaceous sediments (sandstone, silistone and mudstone).	Cretaceous sediments (sandstone, silistone and mudstone). Mid-Tertiary basalts commonly called "Older Volcanics" Mid-Tertiary basalts commondy called "Older Volcanics"	Mid-Tertiary basalts commonly called "Older Volcanics"
	sope class within study wea		Gently indined (2-6°)	Gently inclined (2-6°)	(nc.or) daare	Very gently inclined (0.5-2°) Gently inclined (2-6°)	Very gently inclined (0.5-2*) Gently inclined (2-6*) Very steep (30-45*)	Gently inclined (2-6") Gently inclined (2-6") Moderately inclined (6-18")	Very steep (30-45°) ov Moderatelv inclined (6-18°)	Moderately inclined (6-18°) at Moderately inclined (6-18°)	Gently inclined (2-6') Moderately inclined (6-18')	woerarey inclined (5-187) Gently inclined (2-6°) Moderately inclined (6-18°)	of Gently inclined (2-6") of Gently inclined (2-6") Gently inclined (2-6")	Gently inclined (2-6°) Steep (18-30°) Contributional (2-6°)	Gently inclined (2-6°) Gently inclined (2-6°)	Steep (18-30°) e Steep (18-30°) el Maderarelv inclined (6-18°)	Gently inclined (2-6°) Steep (18-30°)	Gently inclined (2-6°) Steep (18-30°)	er Gently inclined (2-6°) e <i>Moderately inclined (6-18°)</i> referently inclined (7-5°)	(1510) (1500) (1	e <u>Steep (18-30")</u> Gently inclined (2-6") Gently inclined (2-6")	n Moderately inclined (6-18°) Gently inclined (2-6°) Steen (18-30°)	Gently inclined (2-6") Moderately inclined (6-18") Contrivioution (12-6")	oentry inclined (z-o) w Steep (18:30°) o Gently inclined (2-6°)	ol <u>Moderately inclined</u> (6-18°) p Gently inclined (2-6°) lo Gently inclined (2-6°)	Moderately inclined (6-18°) A Moderately inclined (6-18°) of Gently inclined (2-6°)	Steep (18:30°) Steep (18:30°) Maderatelv inclined (6:18°)	ol Steep (18-30°) Gently inclined (2-6°)	Moderately inclined (6-18°) Moderately inclined (6-18°)	p (sently inclined (2-6-) Moderately inclined (6-18°) Gently inclined (2-6°)	d Moderately inclined (6-18°) id Gently inclined (2-6°) (§ Moderately inclined (6-18°)	Moderately inclined (6-18°) Moderately inclined (6-18°) Moderately inclined (6-18°)	al Gently Inclined (2-6°) sl Moderately inclined (6-18°) Gently Inclined (2-6°)	Moderately inclined (6-18°) Steep (18-30°) sl Steep (18-30°)	/ Gently inclined (2-6*) Moderately inclined (6-18*) Steen (18-30*)	Steep (18-30°) Id Gently inclined (2-6°)	le Moderately inclined (6-18") Gently inclined (2-6") Moderately inclined (6-18")	Steep (18-30°) Moderately inclined (6-18°) Gamtivinclined (12-5°)	Gently inclined (6-18°) Gently inclined (2-6°)	woerarey inclined (5-187) Gently inclined (2-6°) s Moderately inclined (6-18°)	Gently inclined (2-6°) Moderately inclined (6-18°) Gently inclined (2-6°)	Moderately inclined (6-18°) Moderately inclined (6-18°) Gamtivinclined (2-5°)	Moderately inclined (6-18°)
	Site geomorphic description				aune crest and swakes	nieln deu		some shallow channels lower valley slopes above creek lower valley slopes above creek	crest/divide between two shallo	Valley head/possible area of ins	Valley head with gully fill	snallow valley neads Ridge (haunted Hills) Inlier of Cretaceous. Valley slope	Narrow flat divide between aml Narrow flat divide between amb	alluvial /colluvial fan from scarp e) floodplain and channel	Low angle colluvial fan slope wit Colluvium and floodplain	Fish Creek Truncated spur with steep (bord Dissected colluvial fan includes c	Alluvial/colluvial fan	Possible ridge of cretaceous Kw ns Buffalo Creek	Alluvial/ colluvial fan with num Steppe with relief of 8m. Possible Southers vallae clone of Show Cr	Tributary of Story Creek, inciseo alluvial terrace of Story Creek	Channel and terrace of Stony Cr Lack of shallow drainage lines gentle low rises	More relief than previous sectio Terrace and floodplain incised	Terrace and floodplain flat topped low ridge in Thorpda	Tributary of the Tarwin River , lo Tributary flood plain with some .	Slope instability in suspected TF Gentle slopes in suspected Thor, Flood plain with numerous shalk	Potentially colluvial soils Thorpdale volcanics, hummocky Flood plain/Terrace Tarwin Rive	Tarwin River East Branch Spur Ridgeline in rolling to steen hills	Possible scarp above ridge and t. Ridge on a plateau surface	valleys and noge shallow slope instability Landside in Thorpdale Volcanics	Rounded crest / summit in Thor, Shallow valley	Valley slope in suspected Thorp. Possible slope instability/ landsl. Valley head and erosion gullies/	Hillslope Valley base and shallow channe Spur end	Valley floor with traces of sever Valley side slope, landslide and s Broad ridge, gently undulating	Valley slope Valley side slope, landslide and s	Edge of ridge with channel head Landslide slope	Valley slopes , sl instability?? Flattened ridge in Thorpdale Vol	Landslide slope in Thorpdale Vo Multiple channels	Landslide Broad slones helow ridge	Broad stopes below huge Broad drainage line, possible slo Broad ridge crest	Landslide slope Valley slope, possible shallow in:	Ridge crest Valley slope Valley floor with channel	Valley slope Valley slope possible instability	Valley slope possible instability
	Broad Landyom 1: 100X scole		subtidal	intertidal	Foredunes	Palaeo tideway Gentivundulating ridge and su	Plain Gently undulating plain Channel	Gently undulating plain Gently undulating plain Undulating rises	Channel Undulating rises	landslide Undulating rises	Undulating rises Undulating rises	Undulating rises Undulating rises Undulating hils.	Gently undulating rises Gently undulating rises Gently undulating rises	Alluvial plain Narrow alluvial plains (riverin Narrow alluvial plains (riverin	Gently undulating plain Flood Plain	Channel Low steep hill Gentiv undulating rises.	Gently undulating rises. Channel	Low rise Low rise Channel/ Narrow Alluvial Plair	Gentity undulating rises. Rise Ganthu undulation rises	Channel alluvial plain	Channel Gently undulating rises. Low rises	Low Hills Floodplain Channel	Floodplain Ridge All. And Blain	Antwell Prain Channel Flood plain	Low rises Low rises Flood plain	Gentty undulating rises. Low ridge Flood plain	Channel Rolling to steep Hills Rolling to steep Hills	Rolling to steep Hills Rolling to steep Hills	Rolling to steep Hills Hills	summit Rolling to steep Hills Rolling to steep Hills	Hills Rolling Hills Rolling Hills	Rolling Hills Channel Rolling Hills	Alluvial plains Rolling Hills Rolling Hills	Rolling Hills Channel Rolling Hills	Ridge Rolling Hills Channel	Rolling Hills Ridge	Rolling Hills Flood plain Low ridge	Channel U ndulating Hills I I novi dating Hills	Undulating Hills Undulating Hills Undulating Hills	U nauuaung Hills Channel Ridge	Ridge Ridge Vallev fbor	Rolling Hills U ndulating Hills Risha	Undulating Hills
	soil badjorm unit	re Crossing	N/A	N/A	ch Alignment	Recent Marine (m)	Foster (Fo) Agnes (Ag) Agnes (Ag)	Agnes (Ag) Agnes (Ag) Irrverloch (In)	Irrverloch (In) Irrverloch (In)	Invertoch (In) Invertoch (In)	Invertoch (In) Invertoch (In)	Inverioch (In) Inverioch (In) (Adjusted) Koorwarra (Ko)	Inverloch (In) (Adjusted) Inverloch (In) (Adjusted) Inverloch (In) (Adjusted)	Buffalo (Bu) Buffalo (Bu) Buffalo (Bu)	Tarwin (Tw)	Tanwin (Tw) Koorwarra (Ko) Leondatha South (Ls)	Leongatha South (Ls) Buffalo (Bu)	Koorwarra (Ko) Riverine (Riv)	Leongatha South (Ls) Leongatha South (Ls) Leonnatha South (Ls)	Riverine (Riv)	Krverine (Krv) Leongatha South (Ls) Koorwarra (Ko)	Koorwarra (Ko) Powlett (Po) Powlett (Po)	Powlett (Po) Warragul (Wg) Boulott (Po)	Powett (Po) Powfett (Po) Powfett (Po)	Warragul (Wg) (Adjusted) Warragul (Wg) (Adjusted) Powlett (Po)	Leongatha South (Ls) Warragul (Wg) (Adjusted) Powlett (Po)	Powlett (Po) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Warragul (Wg)	warragul (wg) Strzelecki (Sz) Strzelecki (Sz)	Warragul (Wg) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Warragul (Wg)	Warragul (Wg) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Warragul (Wg)	Warragul (Wg) Warragul (Wg)	warragu (wg) Warragul (Wg) Strzelecki (Sz)	Strzelecki (Sz) Strzelecki (Sz) Strzelecki (Sz)	Strzelecki (Sz) Warragul (Wg) Adjusted	Warragul (Wg) Adjusted
ated Impacts	ector ID chainages	Sho	- 1100 to -450	-450 to -120	Tren	0 to 380 3 80 to 850	850 to 2270 2270 to 2850 2850 to 2890	2890 to 3500 3500 to 4440 4440 to 4690	4690 to 4720 4720 to 4950	4950 to 5200 5200 to 5450	7100 to 7250	/ 250 to 8030 8030 to 8650 8650 to 9070	9070 to 9300 9300 to 9600 9600 to 14200	14200 to 14370 14370 to 14680	17150 to 17670	17670 to 17740 17740 to 18270 18270 to 18550	18550 to 19130 19130 to 19180	20600 to 21515 21515 to 21580	21580 to 27500 27500 to 27700 27700 to 28470	28550 to 29370 28550 to 29370	293 /0 to 29450 29450 to 31200 31200 to 33600	33600 to 34700 34700 to 34850 34850 to 34880	34880 to 35780 35780 to 36250 262 E0 to 36250	365.80 to 366.20 366.20 to 378.00	37800 to 38200 38200 to 38620 38620 to 39300	39300 to 39550 39550 to 40350 40350 to 40600	40600 to 40675 40675 to 41300 41300 to 43300	43300 to 43900 43900 to 44700	45080 to 45350 45350 to 45500	45500 to 45800 45800 to 45930 45930 to 46120	46120 to 46300 46300 to 46600 46600 to 47050	47050 to 47350 47350 to 47400 47400 to 47620	47620 to 47700 47700 to 48000 48000 to 48300	48300 to 48380 48380 to 48430 48430 to 48740	48740 to 49100 49100 to 49340 49340 to 49380	49380 to 49600 49600 to 50000	50000 to 50300 50300 to 50420 50420 to 50510	50510 to 50540 50540 to 50740 50740 to 50720	50970 to 51300 51300 to 51300 51300 to 51700	5 2050 to 52050 5 2050 to 52080 5 2080 to 52120	5 21 20 to 522 20 5 22 20 to 52 290 5 22 90 to 52 340	5 23 40 to 525 00 5 25 00 to 527 00 5 27 00 to 5 23 00	53100 to 53370
Miti	Trench 5		SC1	SC2	213	S1 S2	1 22 23 23	s 57 S6	59 510	511 512	514 S15 S15	517 518 518	519 520 521	522 523 524	525 526	527 528 529	S30 S31	533 S34 S34	S35 S36 S37	S39 S39	541 542 542	S43 S44 S45	S46 S47	549 S50	S51 S52 S53	S54 S55 S56	S57 S58 S59	S60 S61	563 S64	566 566 567	S68 S69 S70	571 572 573	574 575 576	577 578 579	580 581 587	S84 S84	585 586 587	588 589 589	591 592	594 S95 S95	596 597 598	599 5100	S102

Page 1 of 2

1204ml fo somooifingis bested	Sector determining Residual Impact after EPR's and other comments e. No evident inclision	te Non incised channel	Side slope but no evidence of any significant instability Ridge slope with open shallow depression geo conditions to be confirmed	ie Not steepty sided partial HDD under road at northern end i ision entro.	e Using muu e No steen slones on channel	Requires landside assessment and detailed geotechnical investigation landside assessment for confirm conditions	 Using Hord States and the sense of investigation. Consider moving to west 	Possible older degraded landslide	Proximity to valley head	e Partial HDD already employed	e raiden ruck anleady emphaged e Consider HDD as better alternative	e osnig hou. Ensure unider since Partial HDD under a road	e using HUU under swamp		Requires landslide assessment and detailed geotechnical investigation	e Dam to norm . Consider HUD as a better alternative	e.		e	te Needs landslide assessment for slopes					N eeds assessment of possible landslide below	Possible degraded landslide below		Possible slope instability below	ą	te te steepslopes on bluff	te Using HDD	te Using HDD te Using HDD					Partial HDD under road			Using HUU under channel Partial HDD under road Partial HDD sections				te Detailed geotechnical report is available		
tooqmi to sbutingoM bstogiti	R Moderat Moderat	Low Moderat	no7	Moderat Low Moderat	Low Low Moderat	e High	le Moderat e Hiah	NO7	10W	Low	Moderat	Town	Low	M01	e High	Low	Low Moderat	Low Moderat	Low Moderat	Low Moderat	Low Moderat	MOJ LOW	Low Low	V NOT	LOW LOW	10W	low Low	M07 LOW	Moderat Low	Moderat Moderat	le Low le Moderat	le Moderat le Moderat	wo1 Low	тол тот	MOT .	NO7	MO1	70 M	NO7	wo1 Low		NO7	10W	te Modera		
tooqmi {o sbutingoM bstopitime	te Minor Minor	te Minor te Minor	te Minor te Minor	Minor te Minor Madicih	te Minor te Minor	Moderal Minor	Negligib	te Minor Minor	te Minor te Minor	te Minor te Minor	Minor	te Minor	te Minor	te Minor	te Moderal	te Minor	te Minor Minor	te Minor Minor	te Minor Minor	te Minor te Minor	te Minor te Minor	te Minor te Minor	te Minor te Minor	te Minor te Minor	te Minor te Minor	te Minor te Minor	te Minor Negligib	te Minor te Minor	Minor te Minor	Minor Minor	Negligib Negligib	Negligib Negligib	te Minor te Minor	te Minor te Minor	te Minor te Minor	te Minor te Minor te Minor		te Minor te Minor	te Minor te Minor	Modera						
	Moderal Major	Moderal Moderal	Moderal Moderal	Major Moderal Minor	Moderal	Major	Minor Maior	Moderal	Moderal Moderal	Moderal	Major	Moderal	moderat	Moderal	Moderal	Moderal	Major	Moderal Major	Moderal Major	Moderal Moderal	moderat Moderat	Moderal Moderal	Moderal Moderal	Moderal Moderal	Moderal Moderal	Moderal Moderal	Moderal Minor	Moderal Moderal	Major Moderal	Major Major	Minor Minor	Minor Minor	Moderal Moderal	Moderal Moderal	Moderal Modera	Modera	Moderal Moderal	Moderal Moderal	Moderal	Moderal Moderal		Moderal Moderal	Moderal Moderal	Major		
standord Environmental Performance Requirements (as pe	Coffey List) GM01, GM02, GM04, GM06, GM08, GM09 GM01, GM02, GM04, GM06, GM07, GM08	GM01,GM02,GM04,GM06, GM08 GM01,GM02,GM04,GM06, GM08, GM09	GM01,GM02,GM04,GM06, GM07, GM08 GM01,GM02,GM04,GM06, GM07, GM08	GM01,GM02,GM04,GM06, GM07, GM08, GM09 GM01,GM02,GM04,GM06, GM08 GM015,GM05, GM06	unuu uuuuuu ja unuus GMD1 GMD2, GMD3, GMD6, GMD8 GMD1, GMD3, GMD2, GMD6, GMD6, GMD9, GMD9	GM01, GM02, GM03, GM04, GM06, GM07, GM08 GM01, GM02, GM04, GM06, GM07, GM08	GM01, GM02, GM04, GM06, GM07, GM08	GM01,GM02,GM04,GM06, GM07, GM08 GM01,GM02,GM04,GM06, GM07	GM01,GM02,GM03, GM04,GM06, GM07, GM08 GM01,GM02,GM03, GM04,GM06, GM08	GM01,GM02, GM03, GM04,GM06, GM07, GM08 GM01,GM02, GM03, GM04,GM06, GM07, GM07, GM07,	GM01,0M02,0M02,0M02,0M02,0M02,0M02,0M02,0	GM01,6M02, GM03, GM04, GM05, GM06, GM08	GM01,6M02, 6M03 GM01,6M02, 6M03, GM04,GM06, GM08	G MU 1, G MU 2, G MU 3, G MU 4, G MU 6, G MU 8 G MU 1, G MU 2, G MU 3, G MU 4, G MU 6, G MU 8 G MU 1, G MU 2, G MU 3, G MU 4, G MU 8, G MU 8	GM01,GM02,GM03,GM03,GM04,GM06,GM07,GM08 GM01,GM02,GM03,GM04,GM06,GM07,GM08	G MU I, 6 MU Z, 6 MU S G MU S G MU S G MU S G MU I, 6 M0 Z, 6 M0 S G M0 S C MO I, 6 M0 Z, 6 M0 S G M0 S	GM01,GM02, GM03, GM04,GM06, GM07, GM08 GM01,GM02, GM03, GM04,GM06, GM07, GM08	GM01,GM02,GM03, GM04,GM06, GM08 GM01,GM02, GM03, GM04,GM06, GM07, GM08	GM01,GM02,GM03, GM04,GM06, GM08 GM01,GM02, GM03, GM04,GM06, GM07, GM08, GM09	GM01,GM02, GM03, GM04,GM06, GM07, GM08 GM01, GM02, GM03, GM04,GM06, GM07, GM08, GM09	GM01,GM02,GM04,GM06,GM08 GM01,GM02,GM03,GM04,GM06,GM07,GM08	GM01,GM02,GM04,GM06, GM08 GM01,GM02,GM03, GM04,GM06, GM07, GM08	GM01,GM02, GM03, GM04,GM06, GM08 GM01,GM02,GM03, GM04,GM06, GM07, GM08	GM01,GM02, GM03, GM04,GM06, GM08, GM09 GM01,GM02,GM04,GM06, GM08	GM01,GM02,GM04,GM06,GM08 GM01,GM02,GM04,GM06,GM07,GM08	GM01,GM02, GM03, GM04,GM06, GM08 GM01,GM02,GM04,GM06, GM07, GM08	GM01,GM02,GM04,GM06,GM08 GM01,GM05	GM01,GM02,GM04,GM06, GM08 GM01,GM02,GM04,GM06, GM07, GM08	GM01,GM02,GM03, GM04,GM06, GM08, GM09 GM01,GM02,GM04,GM06, GM07, GM08	GM01,GM02,GM03, GM04,GM06, GM08 GM01,GM02,GM04,GM06, GM07, GM08	GM01,GM05, GM09 GM01,GM05, GM09	GM01,GM05, GM09 GM01,GM05	GM01,GM02,GM04,GM06,GM08 GM01,GM02,GM04,GM06,GM07,GM08	GM01,GM02,GM04,GM06, GM08, GM09 GM01,GM02,GM04,GM06, GM07, GM08	GM01,GM02,GM04,GM06,GM08 GM01,GM02,GM04,GM06,GM07,GM08	G MU 1, 6 MU 2, 6 MU 4, 6 MU 0, G MU 1, 6 MU 2, 6 MU 4, 6 MU 0, 6 MU 7 C MU 1, 6 MU 2, 6 MU 4, 6 MU 0, 6 MU 7	GM01,GM02,GM04,GM05,GM08 GM01,GM02,GM04,GM05,GM06,GM07,GM08	G M01, G M02, G M04, G M06, G M 08 G M01, G M02, G M04, G M 06, G M 08	G MU 1,5 MU 2,5 MU 4,5 MU 6, 5 MU 8 G MU 1,5 MU 2,6 MU 4,5 MU 6, 6 MU 7, 6 MU 8 C MU 1,5 MU 2,5 MU 6,5 MU 7,5 MU 8	GMU J,GMU S GMU S GMU J,GMU S,GMU S, GMU S, GMU S, GMU S GMU I,GMU Z,GMU S, GMU S, GMU S, GMU S		GM01,GM02,GM03, GM04,GM06, GM08 GM01,GM02, GM03, GM04,GM06, GM08	GM01,GM02, GM03, GM04,GM06, GM07, GM08 GM01,GM02, GM03, GM04,GM06, GM07, GM08	GM01, GM02, GM03, GM04,GM06, GM07, GM08		
	factors dete mining sensitivity of sector Due to hydrology and flood Due to sonings and existing slope instability	oue to regolith oue to hydrology and flood	oue to moderate slopes in Thorpdale oue to regolith	Due to Flood and hydrafolgy plus regolith Due to regolith uncertainty. Varied in floodplain Due to room a sonether area ion	ue to regoint returnin Due to regoint Due to fond and hudralaav.reaalith	Due to very steep slope/ escorperation and landslide due to undulation terrain and evidence of instruktiety	bue to regolith and an and an art to the west Due to standificant landside features	bue to older degraded lands fide and regolith bue to reading	oue to provinity to valley head the to recovinity uncertainty	ue to prosimity to guly heads Due to prosimite landstides and uncertain readitify	ore to possible tanton de anter tann egonini Due to hydrology and flood	oue to scope inscannity Due to regolith uncertainty	ue to low ying wetana, ngarology, jood Due to regolith and possible erosivity	ue to supe ana renef ana possible alcentarin regiontri Due to regolith	oue to prossine to watercourse; jood and regaint Due to possible landslides and uncertaint 	ue to foo a hydra logy a na uncertain regourth Due to regolith	ue to regourn ana morerare stopes Due to stope and proximity to guily head, groundwater outflow	oue to slope and regolith Due to slope and proximity to gully head, groundwater outflow	oue to regolith oue to slope, hydrology and flood	oue to slope and regolith oue to slope and regolith	oue to regolith oue to proximity to numerous active gully heads	Due to regolith uncertainty Due to regolith uncertainty	Due to regolith uncertainty Due to relief and slope and regolith	Due to hydrology and flood Due to regolith uncertainty	Due to regolith uncertainty Due to possible landslide in small quily below	ue to regolith uncertainty Due to complex-regolith stratigraphy and proximity to large landslide below	Due to complex regolith stratigraphy Due to slope and regolith stratigraphy plus adjacent landslide	Jue to complex soil stratigraphy Jue to steep slopes and soft soil, stability	Jue to hydrology, flood , soft soils and patential ASS Jue to relief and slope and regolith	oue to hydrology, flood , soft soils and potential ASS oue to steep slopes and regolith	oue to regolith uncertainty oue to relief and slope and stability	oue to flood and hydrology plus regolith oue to landslide presence	Due to complex regolith stratigraphy Due to moderate slopes, regolith and hydrology	oue to hydrology and flood oue to relief and slopes and regolith uncertainty/ complex stratigraphy	Due to complex regolith stratigraphy Due to moderate stopes, regolith, and hydrology	ue to hydrology hood and regulth Due to moderate slopes, regolith hydrology	oue to regolith variable stratigraphy oue tor relief and slope and regolith uncertainty	oue to flood and regalith uncertainty oue to nature of paleo channel and regalith	ue to pooplain natue, regoli tii nyarology ana pood Due to regolith uncertainty	ue to poor Due to regolit uncertainty Due to commiex readith stratiaranhv		ue to regolith Jue to moderate slopes and regolith variobility	Due to regolith Due to regolith and geology change Due to regolith and deology change	ore to regamm, geology analys ana elief and slope issue due to amount of cut and fill needed.		
toqmi lo sonoofingis befogitime	gh aior	oderate L oderate L	oderate L oderate L	ajor oderate L	oderate L ah	ajor	oderate E aior	oderate L	oderate L oderate L	oderate L	ajor	oderate [oderate L	oderate L	ah ah	oderate L	oderate L ajor L	oderate E ajor E	oderate L ajor L	oderate L gh	oderate L gh	oderate L oderate L	oderate L oderate L	oderate L oderate L	oderate L oderate L	oderate L oderate L	oderate L inor L	oderate L gh	ajor L oderate L	ajor b gh	w L oderate L	oderate L oderate L	oderate L oderate L	oderate L oderate L	oderate L oderate L	oderate L	oderate L	oderate L oderate L	oderate L	oderate L oderate L oderate L		oderate L oderate L	oderate L oderate L	ajor		
eralis sensitivity of sector	NS SA	o S M M M	N N	S S S	S S S S S S S S S S S S S S S S S S S	ES VK	VS VS	S FO	- S S	S N	202	2 2 2 2	8 8 8	S S	S 22 3	S S S	N SN	s VS	s VS	S VS	s vs	5 S N M	s N M	s N M	s s M M	s s M M	s s M M	S VS	VS S M	VS S	S VS N	h) vs M	s N M	s N W	2 S S	<u>, , , , , , , , , , , , , , , , , , , </u>	2 S S	2 S S S	<u>, 85</u>	<u>s s s</u>		s N M	<u>8 8</u>	NS N		
	Geology (1,250K GSV mapping) Thorpdale Volcanic Group (-Put): Generic Thorpdale Volcanic Group (-Put): Generic / Wonthagai F	Thorpdale Volcanic Group (-Put): Generic / Wonthaggi F Thorpdale Volcanic Group (-Put): Generic / Wonthaggi F	Thorpdale Volcanic Group (-Put): Generic / Wonthaggi F Thorpdale Volcanic Group (-Put): Generic / Wonthaggi F	Thorpdale Volcanic Group (-Put); Generic Thorpdale Volcanic Group (-Put); Generic Thorpdale Volcanic Groun (-But); Generic	morpoue vorcanc Group (-ruy, Generic Thorpdale Volcanic Group (-Put); Generic Thoradale Volcanic Groun (-Put): Generic	Thorpdale Volcanic Group (-Put): Generic Thorndale Volcanic Group (-Put): Generic	Wonthaggi Formation (Ksw); generic Thoradale Volcanic Group (-Put); Generic / Latrobe Valk	Latrobe Valley Group (-PV): generic Latrobe Valley Group (-PV): generic	Latrobe Valley Group (-PV): generic Latrobe Valley Group (-PV): generic	Latrobe Valley Group (-PV): generic Latrobe Valley Group (-PV): generic / Thorndole Volconic	Latrobe Valley Group (-PV): generic/ Thorpdole Volcanic Latrobe Valley Group (-PV): generic/ Thorpdole Volcanic	uarobe Valley Group (-rry): generic/ alluvium(Qa1): ge Latrobe Valley Group (-Pv): generic/ alluvium(Qa1): ge	alluvium, Qa1,; generic Lotrobe Valley Group (-Pv); generic	ши оре Valley or oup (-rry): generic/ тто раите Vokunk Thorpdale Volcanic Group (-Put): Generic 	Thorpdale Volcanic Group (-Puty: Generic Thorpdale Volcanic Group (-Put): Generic	i norpadae Voicanic Group (-Put): Generic Thorpdale Volcanic Group (-Put): Generic	rnarpaae voicanic uroup (-Puty: Generic Tharpdale Volcanic Group (-Put): Generic	Thorpdale Volcanic Group (-Put): Generic Thorpdale Volcanic Group (-Put): Generic	Thorpdale Volcanic Group (-Put): Generic Thorpdale Volcanic Group (-Put): Generic	Thorpdale Volcanic Group (-Put): Generic Thorpdale Volcanic Group (-Put): Generic	Thorpdale Volcanic Group (-Put): Generic Thorpdale Volcanic Group (-Put): Generic / Latrobe Valk	Latrobe Valley Group (-Pv): generic Latrobe Valley Group (-Pv): generic	Latrobe Valley Group (-Pv): generic Latrobe Valley Group (-Pv): generic	Latrobe Valley Group (-Pv): generic Latrobe Valley Group (-Pv): generic	Latrobe Valley Group (-Pv): generic Latrobe Valley Group (-Pv): generic	totrobe Valley Group (-Pv): generic Haunted Hills Formation(N lh): generic	Haunted Hills Formation(NIh): generic Haunted Hills Formation(NIh): generic	Haunted Hills Formation(N lh): generic alluvium(Qa1): generic	alluvium(Qa1): generic alluvium(Qa1): generic	alluvium(Qa1); generic alluvium(Qa1); generic	alluvium(Qa1); generic alluvium(Qa1); generic	alluvium(Qa1); generic alluvium(Qa1); generic / Haunted Hills Formation(NII	Haunted Hills Formation(N Ih): generic Haunted Hills Formation(N Ih): generic	Haunted Hills Formation(N lh): generic Haunted Hills Formation(N lh): generic	Haunted Hills Formation(N lh): generic Haunted Hills Formation(N lh): generic	Haunted Hills Formation(NIh); generic Haunted Hills Formation(NIh); generic	Haunted Hills Formation(NIh); generic ofluvial terrace deposits(Qo2); generic	alluvial terrace deposits(Qa2); generic alluvial terrace deposits(Qa2); generic	alluvial terrace deposits(Qa2); generic alluvial terrace deposits(Qa2); generic	ouvior cerrace deposits, (d.d.); generic Haunted Hills Formation(N Ih); generic Haunted Hills Formation(N Ih); generic		Latrobe Valley Group (-Pv): generic Latrobe Valley Group (-Pv): generic	Latrobe Valley Group (-Pv): generic Thorpdale Volcanic Group (-Put): Generic Matematic Volcanic Groum (Put):	uuroue ruies a auprinaipuale raicuile aray (rui). Generic		
	Geology (1;100K soil mapping) Midi-Tertiary basaits commony called "Older Volcanics" Midi-Tertiary basaits commony called "Older Volcanics"	Mid-Tertiary basatts commonly called "Older Volcanics" Mid-Tertiary basatts commonly called "Older Volcanics"	MkL-Tertiary basaits commonly called "Older Volcanics" MkL-Tertiary basaits commonly called "Older Volcanics"	Recent (contemporary) allovium sediments deposited by various stream Recent (contemporary) allovium sediments deposited by various stream Decomd (contemporary) allovium sediments deposited by various stream Decomd (contemporary) allovium sedimente denorated by various erroran	recent (contempor any aurwain examinents uspossieru oy va lous sirean Mid-Tertitar basatils commonly called "Older Volcarics" Recent (contemporand) alluvium sediments denosited by various stream	Mid-Tertiary basaits commonly called "Okler Volcanics" Mid-Tertiary basaits commonly called "Okler Volcanics"	Mid. Tertiany basets communy galled "Older Volcands" Mid. Tertiany basets commony called "Older Volcands" Mid. Tertiany basets commony called "Older Volcands"	Mid-Tertiary basaits commonly called "Older Volcanics" Later Tertiary (Plicenen) sedfinnents	Late Tertiary (Pliocene) sediments Late Tertiary (Pliocene) sediments Late Tertiary (Pliocene) sediments	Late Tertiary (Noreane) sediments Late Tertiary (Plicoene) sediments	Late Tertiary ("Plicone) sediments Late Tertiary (Plicone) sediments Tertiary and sediments	reitary securiterits, mostly are reitary = including the Haunted Fills gra Tertiary sectionents, mostly late Tertiary - including the Haunted Hills gra	I riss map uni cealineares cox-tyrig a reas wind: are permanent or sem-p Predominantly pre-basa to Tertiary sediments, including basait colluviur	Precomments pre-baselic retrary sectiments, including baselic colluviur Precommently pre-baselic Tertiary sectiments, including baselit colluviur	Precomments pre-baselic retrary sectiments, including baselic colluviur Precommently pre-baselic Tertiary sectiments, including baselit colluviur	Predominantly pre-basatic Lentiary sediments, including basan colluvur Predominantly pre-basatic Tentiary sediments, including basan colluvur	Precominantly pre-assatic rentary sectiments, including basar colluvul Predominantly pre-basaltic Tentiary sediments, including basati colluviur	Predominantly pre-basatilic Tertiary sediments, including basalt colluviur Predominantly pre-basatilic Tertiary sediments, including basalt colluviur	Predominantly pre-basaitic Tertiary sediments, including basait colluviur Predominantly pre-basaitic Tertiary sediments, including basait colluviur	Predominantly pre-basatilic Tentiary sediments, including basalt colluviur Predominantly pre-basatilic Tentiary sediments, including basalt colluviur	Predominently pre-basabic Tertiary sediments, including basalt colluviur Predominently pre-basabic Tertiary sediments, including basalt colluviur	Tertiary sediments, mostly late Tertiary - including the Haunted Hills gra Tertiary sediments, mostly late Tertiary - including the Haunted Hills gra	Tertiary sediments, mostly late Tertiary - including the Haurtied Hills gra Tertiary sediments, mostly late Tertiary - including the Haurtied Hills gra	Tertiary sediments, mostly late Tertary - including the Haunted Hills gra Tertiary sediments, mostly late Tertary - including the Haunted Hills gra	Tertiary sediments, mostly late Terfary - including the Haurted Hills gra Tertiary sediments, mostly late Terfary - including the Haurted Hills gra	Tertiary sediments, mostly bite Terfary - including the Haunted Hills gra Tertiary sediments, mostly bite Terfary - including the Haunted Hills gra	Tertiary sediments, mostly late Terfary - including the Haurtled Hills gra Tertiary sediments, mostly late Terfary - including the Haurtled Hills gra	Late Pleistocene altuvial sediments (most likely outwash from nearby hi Recent (contemporary) altuvium sediments deposited by various strean	Recent (contemporary) altuvium sediments deposited by various strean Recent (contemporary) altuvium sediments deposited by various strean	Recent (contemporary) altwium sediments deposited by various strean Recent (contemporary) altwium sediments deposited by various strean	Recent (contemporary) alluvium sediments deposited by various stream Recent (contemporary) alluvium sediments deposited by various stream	Recent (contemporary) alturium sediments deposited by various strean Late Pleistocene alturial sediments (most likely outwash from nearby hi	Late Pleistocene alluvial sediments (most likely outwash from nearby hi Late Pleistocene alluvial sediments (most likely outwash from nearby hi	Late Pleistocene altuvial sediments (most likely outwash from nearby ni Late Pleistocene altuvial sediments (most likely outwash from nearby ni	Late Pleistocene altuvial sediments (most likely outwash from nearby hi Late Pleistocene altuvial sediments (most likely outwash from nearby hi	Late Pleistocere alluvial sediments (most likely outwash from hearby in Late Pleistocere alluvial sediments (most likely outwash from nearby hi	Tetrary sediments, mostly late Tetrary - including the Haurted Hills gra Late Pleistocere alluvial sediments (most likely outwash from hearby hi	Late Pleistocere alluvial sediments (most likely outwash from hearby hi Late Pleistocere alluvial sediments (most likely outwash from hearby hi	Late Pleistocere alluvial sediments (most likely outwash from nearby in Late Pleistocere alluvial sediments (most likely outwash from nearby hi	Recent (contemporary) aurvuture souments deposited by various stream Alluvial sectiments believed to have been deposited in the late Pilocene Alluvial sectiments believed to have been deposited in the late Pilocene		Tertiary sediments, mostly late Tertiary - including the Haunted Hills gra Tertiary sediments, mostly late Tertiary - including the Haunted Hills gra	Tertiary sediments, mostly late Tertiary - including the Haurted Hills gra Predominantly pre-basabic Tertiary sediments, including basait colluvium	precommany remark sometries, mostly rare remarks - incruming the Haunted Hills gravels.		
	 Site geomorphic description Slope Class within study area Gently inclined (2-6") Valley slopes with spring and Moderately inclined (6-18") 	Valley side slopes Moderately inclined (6-18°) Valley Floor Gently inclined (2-6°)	valley side slope Moderately inclined (6.18°) Low narrow ridge between two d Gently inclined (2.5°)	Berry's Greek Gentry inclined (2-6') broad alluvial terrace and mater Gentry inclined (2-6') Admonstrativity and (2-10')	spur Moderately inclined (6-18°) Alluxial vallev floor Gentrivinclined (6-18°) Alluxial vallev floor	very steep valley slope and possil Steep (18-30°) Moderated internet (6-18°)	Backscarp of landslide below to t Moderately inclined (6-18") large landslide feature Moderately inclined (6-18")	Older degraded landslide Moderately inclined (6-18") sess Low rise Gently inclined (2-56")	ises Valley head possible instability? Moderately inclined (6.18") ises Ridge/divide Genthy inclined (2.56")	isses Ridge/divide but with landslides iGently inclined (2-6 ¹) isses values ide shores off inthe Morwel <u>Moderate interned</u> (6-18°)	Ploodplain and terrace Little Molecular Model (2-6°)	whitsteep valies supervisioned area (2-6) while heat you will be a supervision of the sup	Weuand with native vegetation leently inclined (2-6') Ridge crest Gently inclined (2-6')	Narrow ruge adove proad valiev (<u>Notect all y neuro</u> d (<u>0-16</u>) Ridge creat and low valley sig Gently inclined (<u>2</u> -6 [*])	broad valley nooi with u acce of disently inclined (2-6) moderately sided ridge between (Moderately inclined (6-18°)	Valey troor and Champel Moderarely Inclined (5-18) Valley side stope Gently inclined (2-6')	side valley slope side valley slope above a guilled <i>Moderotely inclined</i> (6-18°)	below ridge crest below ridge crest above gullied d Moderately inclined (6-18°)	Ridge above valley (Thorpdale) Gently inclined (2-6°) valley head drainage line and we <i>Moderotely inclined</i> (6-18°)	below ridge crest Moderately inclined (6-18°) Valley head with slope instability Moderately inclined (6-18°)	Ridge crest Ridge crest with numerous valley Gently inclined (2-6*)	w hLocal hill top w hRidge crest above south facing va Gently inclined (2–6°)	w hBelow ridge crest above north fad Gently inclined (2-6 ⁻¹) w hValley slopes with possible instab <i>lModerately inclined (6-18°</i>)	Channel within valley floor Gently inclined (2-6") w h Valley slope (2-6")	w h Ridge top W h Ridge top above valley head with Genth inclined (2-6°)	w h Ridge top W h Ridge crest above south facing val Gently inclined (2-6")	w h Broad flattened ridge crest Gently inclined (2-6") w h Broad flattened ridge crest with p <i>Moderately inclined (6-18"</i>)	High alluvial terrace plus colluviu Gently inclined (2-6 ⁻) Palaeo Channel bluff (steep in pa <mark>Steeply inclined (>18°)</mark>	Palaeo flood plain with trace of pl Very gently indined (0.5-2°) Terrace remnant	Palaeo flood plain with trace of p Gently inclined (2-6 ⁻) Bluff on palaeo channel	Palaeo terrace remnant Very gently indined (0.5-2°) River bluff of Morwell River (mod Steep (18-30°)	Modern active channel (steep bagently inclined (2-6°) Valley slopes with large landslide [<u>Moderately inclined</u> (6-18°)	uplifted terrace high level Gently inclined (2-6 ⁻) mod slopes Palaeo channels on u <i>Moderately inclined</i> (6-18°)	palaeo channel floor Gently inclined (2-6 ⁵) mod slopes Palaeo channels on ul <i>Moderotely incline</i> d (6-18°)	remnant terrace surface Very gently indined (0.5-2") mod slopes Palaeo channels on ul Moderately include (6-18")	pataeo channel rixor mod slope Palaeo channels on U <u>Moderret include</u> (6-18°)	w h higher level terrace Gently inclined (2-6 ⁻) Bluff Moderately inclined (6-18 ⁻)	Palaee floodplain Gently inclined (2-6 ⁻) Palaee levee and channel Gently inclined (2-6 ⁻)	Palaeo noodplain with traces of deently inclined (2-6-) Terrace of tributary Gently inclined (2-6')	I routary leading into Hazelwood <i>Moderary Jizumed</i> (5-18*) undutating surface [Gently inclined (2-6*) alluvial plain [Ukvidend (2-2*)]		Gently inclined (2-6") Moderately inclined (6-18°)	Gently inclined (2-6 [*]) Gently inclined (2-6 [*])	Moderately inclined (6-18°)		
	soil landform unit Broad Landform 1:100K scale Warragu (1%g) Adjusted Valley fbor Uncertain ?? Contact Warragu Undulating H≣ls	Uncertain ?? Contact WarraguUndulating Hills Uncertain ?? Contact WarraguUndulating Hills	Uncertain ?? Contact Warragu Uncutating Hills Uncertain ?? Contact Warragu Ridge and undulating slopes	Riverine (Riv) Channel Riverine (Riv) Alluvial terrace Privarine (Riv) Channel	Network (NV) Crames Warragu (Wg) Adjusted ?? spur Riverine (Riv) Channel	Warragul (Wg) Undulating rises Warragul (Wo) Undulation rises	Warragu (Wg) Undutting reso Warragu (Wg) Undutting reso Warragu (Wd) Landslide slopes	Varmager (NG) Varmager (NG) Morwell with Boolarra (Mr/BI). Rolling bow hills to undulation ris	Morwell with Boolarra (MrBJ). Rolling be mills to undutating its Morwel with Boolarra (MrBJ). Rolling be mills to undutation its	Morwell with Boolarra (MrBi), Rolling ben hills to undutating its Upperfain Contact Morwell with Rolling be hills to undutation its	Uncertain Context Workell with the Channel and time to unwatering in Uncertain Context Morvell with Channel	Boolaria with Morwell (B/Mr) Undutating low nills to rolling to Boolaria with Morwell (B/Mr) Undutating low hills to rolling low	swamp (sw) Silver Creek with Warragul (ScRolling) by hills.	Silver Creek with Varragui (SCROIIIng bw hills. Silver Creek with Varragui (SCROIIng bw hills.	Silver Creek with Warraud (Sc Kaley Foor Silver Creek with Warraud (Sc Ridge Sarron Creek with Warraud (Sc Ridge	Silver Creek with Vvaragul (SC hame) Silver Creek with Vvaragul (SC hame) Silver Creek with Vvaragul (SC hame) but hills.	Sinver Creek with Warragu (SCROlling bw hills. Silver Creek with Warragu (SCROlling bw hills.	Silver Creek with Warragul (ScRolling bw hills, Silver Creek with Warragul (ScRolling bw hills,	Silver Creek with Warragul (ScRolling low hills. Silver Creek with Warragul (ScRolling low hills.	Silver Creek with Warragul (ScRolling bw hills. Silver Creek with Warragul (ScRolling bw hills.	Silver Creek with Warragul (ScRolling bw hills. Silver Creek with Warragul (ScRolling bw hills.	Boolarra with Morwell (BVMr) Undulating low hills to rolling lo Boolarra with Morwell (BVMr) Undulating low hills to rolling lov	Boolarra with Morwell (BI/Mr) Undutating low hills to rolling lo: Boolarra with Morwell (BI/Mr) Undutating low hills to rolling low	Boolarra with Morwell (BI/Mr) Valley fbor Boolarra with Morwell (BI/Mr) Undulating low hills to rolling low	Boolarra with Morwell (BI/Mr) Undutating low hills to rolling lo: Boolarra with Morwell (BI/Mr) Undutating low hills to rolling low	Boolarra with Morwell (BIMr) Undutating low hills to rolling lo: Boolarra with Morwell (BIMr) Undutating low hills to rolling low	Boolarra with Morwell (BI/Mr) Undulating low hills to rolling lo: Boolarra with Morwell (BI/Mr) Undulating low hills to rolling low	Yimar (Yn) (adjusted) Stagnant alluvial plain. Riverine (Riv) Alluvial plain	Riverine (Riv) Alluvial plain Riverine (Riv) Alluvial plain	Riverine (Riv) Alluvial plain Riverine (Riv) Alluvial plain	Riverine (Riv) Alluvial plain Riverine (Riv) Alluvial plain	Riverine (Riv) Flood plain and channel Yinnar (Yn) Alluvial plain	Yinnar (Yn) Alluvial plain Yinnar (Yn) Alluvial plain	Yinnar (Yn) Alluvial plain Yinnar (Yn) Alluvial plain	Yinnar (Yn) Alluvial plain Yinnar (Yn) Alluvial plain	Yimar (Yr) Allwyai pain Yimar (Yr) Allwyai pain Allwyai pain	Boolarra with Morwell (B/M/r) Undutating low hills to rolling lo Yinnar (Yn) Alluvial plain	Yinnar (Yn) Alluvial plain Yinnar (Yn) Alluvial plain	Yimar (Yr) Alluvial plain Yimar (Yr) Alluvial plain	Kwerne (Kw) Aurwai pain and channel Uncertain ??-Loy Yang (Ly) p/Undulating low rises Lov Yang (Ly) Plain	 onverter Station	Boolarra with Morwell (BYMr) Rkige crest Boolarra with Morwell (BYMr) Valley slope	Boolarra with Morwell (BYMr) Gentle valey and low ridge Boolarra with Morwell (BYMr) Gentle valey and low ridge	Boolarra with Morwell (B/Mr). Gentle valley and low ridge	Converter Station	CONVERTER STATION
	ainages 370 to 53390 190 to 53500	500 to 53720 720 to 53800	800 to 53900 300 to 54330	330 to 54385 385 to 54770 "70 to 54210	810 to 54970	010 to 55030	940 to 56250 150 to 56830	830 to 57180 :80 to 57530	530 to 57900 100 to 60400	400 to 61100	500 to 61570	800 to 63500	500 to 64500	300 to 66530	540 to 66900	900 to 6/030 130 to 68000	500 to 68850	850 to 69300 300 to 69600	600 to 70140 140 to 70300	300 to 71600 500 to 72050	050 to 72400 400 to 73700	700 to 74050)50 to 74250	250 to 74620 520 to 74930	930 to 74980 180 to 75230	230 to 75300 300 to 75450	450 to 75750 750 to 76050	050 to 76400 100 to 76530	530 to 77320 320 to 77400	'400 to 77520 520 to 77580	580 to 77680 580 to 77740	740 to 77920 320 to 77950	950 to 78230 130 to 78450	450 to 78870 370 to 78920	920 to 78930 930 to 78970	970 to 79040 340 to 79060	170 to 79300	300 to 79720 720 to 79950	950 to 81550 550 to 81730	730 to 83350	500 to 85500 500 to 85400 100 to 87200	Driffield C	o 270 1 to 340	0 to 510 0 to 720	stion Site	poomloza	מצבואהחחי
	rench Sector ID ch. 103 533 104 533	105 531 106 537	107 531 108 535	109 54 110 543 111 543	112 546 113 546	114 55K	116 555	118 566	120 575	122 604	124 614	126 618	12/ 03.	130 653	132 666	134 670 134 670	136 685	137 68t 138 693	139 69t 140 701	141 70: 142 716	143 7.2K 144 7.24	145 73. 146 740	147 74i. 148 746	149 745 150 749	151 752 152 753	153 754 154 757	155 76L 156 764	157 76! 158 773	159 77 ₄ 160 775	161 77. 162 776	163 77. 164 779	.165 77. .166 782	167 78 [,] 168 788	169 78.	171 78.	174 791	175 79.	177 79. 178 815	1/9 81.	181 83. 182 835 183 854		1 0 ti 12 2 70	13 34t 516	5 Sta.	Ė	:

Page 2 of 2

Overall Converter Station Site

Loy Yang (Ly)

red to confirm site

Stability assessment and Modrate character and stability

Modrate

Major

GM01, GM02, GM03, GM04, GM06, GM07, GM08

Due to regolith , pro: cut and fill needed.

s/vs

Haunted Hills Formation(NIh): generic

⁻ormation including gravel

Broad low hill with cut on northem side for existing t

Jndulating low rises

Ħ

APPENDIX B: IMPACT MAPS

TRENCH SECTORS SC1 TO S15

APPENDIX C: UNMITIGATED MAJOR AND HIGH SIGNIFICANCE OF IMPACT MAPS

APPENDIX D: RESIDUAL HIGH SIGNIFICANCE OF IMPACT MAPS

APPENDIX E: MARINUS SITES OF SIGNIFICANCE REPORT

Desktop review for Environmental GeoSurveys P.L. GSA(V) database of sites of geological & geomorphological significance Marinus Link Project Victoria

This report is a desktop report provided by Dr Susan White, (BA, BSc, Dip Ed, MSc (Melb), PhD (La Trobe). She is an experienced earth scientist with expertise in geological and geomorphological heritage assessment and manages the site database for GSA(V).

The Geological Society of Australia (Victoria) database of Sites of Geological & Geomorphological Significance for the onshore area of Victoria affected by the construction of the Marinus electricity link was interrogated for potential sites of significance.

The area is on the Warragul 1:250 map sheet and are in the Local Government Areas of Baw Baw and South Gippsland Shire Councils and La Trobe City Council. The easement corridor is narrow.

Only two sites are listed in this corridor; Waratah Bay- Cape Liptrap (WL 001) and the La Trobe Valley Brown Coal Deposits (WL 008). Both of these are large sites.

Both these sites do have subsites that are of high significance, but the actual easement does not affect these specific subsites. As a result, the details of these subsites are not provided.

The general details of the 2 sites are:

WL 001 Waratah Bay - Cape Liptrap

Large site; Public and private land

Description

The coastal exposure reveals part of the complex section across the Waratah Bay axis. At the cave (WL 001.1) is Cambrian greenstone which is flanked on the west by L. Devonian Waratah Limestone faulted against Lower Devonian Liptrap Formation. To the east, the Cambrian rock abut Lower Ordovician Digger Island Limestone which is the only calcareous facies in the Ordovician sequence and contains small karst caves (WL 001.2), Further east is Lower Devonian Bell Point Limestone which unconformably overlies Waratah Limestone. The Digger Island Limestone contains well-preserved trilobites and Waratah Limestone a variety of corals. Spectacular examples of tightly folded Liptrap Formation outcrop in cliffs and shore platforms (WL 001.3). The diversity of lithologies and structures arc reflected in variable coastal geomorphology. Sea caves are also present. Includes Bird Rock, Bell Point Trilobite localities, formations. Complex and recent faulting is exposed in the cliff on the eastern side of Cape Liptrap where an uplifted shore platform is exposed (WL 001.4). The top surface of the Cape has well dated Pleistocene carbonate and siliceous dunes. Old lime kilns present.

Significance

State/National

This is a large site which exposes the complex sedimentary, tectonic and landscape history of the area from Cambrian through to Pleistocene. Of particular significance is the group of chevron folds in Pleistocene Bridgewater Formation and the uplifted shore platform indicating that faulting and uplift has continued to occur recently. Spectacular exposures of tectonic activity occur in the cliffs and shore platforms. Excellent teaching and research site. The sequences of dated dunes on the uplifted surface of Cape Liptrap are important for the understanding of the current landscape evolution.

WL 008 La Trobe Valley Brown Coal Deposits Large site: crown/public Description

The Morwell Formation, a complex late Oligocene to early Miocene unit of thick brown coal seams with subordinate interseam sediments, is widespread in the La Trobe Valley Depression, the Haunted Hill Block and the Moe Swamp Basin. It is 150 metres to 180m thick at Morwell, increasing to 210m near Gormandale and has at least 4 seams the upper one being exposed in the Morwell Open Cut. Overlying the Morwell Formation in the La Trobe Valley Depression is the youngest unit of the coal measures sequence, the Yallourn Group of middle to late Miocene age. The lower part of the Yallourn Group comprises ~120m of clay, sand and local thin coal seams (Morwell IO Seam). The overlying Yallourn Seam is up to 97 metres thick, and near the La Trobe River is overlain by another unnamed seam up to 16 metres thick. Post-Yallourn Seam gravel, sand and clay sediments (Haunted Hill Gravel Formation) up to 100m thick, occur in the deeper synclinal areas. The age of the formation is considered to be largely late Pliocene to early Pleistocene. Three subsites have been identified: WL 008.1 (Fish and plant fossil site); WL 008.2 (Western Batters Haunted Hills gravels); WL 008.3 (North western batters exposure of upper part of sequence).

Significance

International

The Morwell open cut includes the type section of the Morwell Formation Coal Measures and the associated overburden sediments. The Yallourn open cut contains the type section of the Yallourn Formation. Significant fossils, especially pollen occur and some deposits show the transition between terrestrial and coastal conditions. The deposits are one of the largest known sequences of Olig-Miocene brown coal deposits in the world.

Conclusion

I do not see any serious issues with sites of significance with the development of the project. The limited width of the easement and the route taken avoids most of the known sites. The 2 sites that are relevant are large and construction damage should be able to be avoided.

Susen while

Dr Susan White OAM Wakelin Associated Pty Ltd

