En
Vİ
rc
าก
m
ne
n
to
П
n
\cap
\supset
C.
t :
S
to
ır
ϵ
r
n
0
'n
t
_
\vdash
16
۸,
r
r
ì
d
a
6
$\overline{}$
)(
)
'n
V
0
r
te
ېږ
٠ (
S
tc
tr
i
\bigcirc
n

Appendix B Contaminated Land and Acid Sulfate Soils Impact Assessment

Marinus Link

Contaminated Land and Acid Sulfate Soils Impact Assessment – Heybridge Converter Station, Tasmania

Tetra Tech Coffey Pty Ltd

20 November 2024

Reference: 754-MELEN215878ML_Sub_CSASS-Tas_R01

MARINUS LINK

Contaminated Land and Acid Sulfate Soils Assessment – Heybridge Converter Station, Tasmania

Report reference number: 754-MELEN215878ML_Sub_CSASS-Tas_R01

20 November 2024

PREPARED FOR

Marinus Link Pty Ltd 1/7 Maria Street Lenah Valley TAS 7008

PREPARED BY

Tetra Tech Coffey Level 11, 2 Riverside Quay, Southbank VIC 3006 Australia p: +61 3 9290 7000 f: +61 3 9290 7499 ABN 55 139 460 521

QUALITY INFORMATION

Revision history

Revision	Description	Date	Author	Reviewer	Approver
Rev00	Original	20/11/2024	EG	ВТ	ВТ

Distribution

Report Status	No. copies	Format	Distributed to	Date
Original	1	PDF	Tetra Tech Coffey – ESMA; MLPL	20/11/2024

Certified Environmental Practitioner (Site Contamination) report verification

I have reviewed and can confirm that all works and actions conducted to support this environmental assessment have been undertaken in general accordance with the National Environment Protection (Assessment of Site Contamination) Measure, 1999 as amended 2013, except where noted in this report.

Bryden Tiddy

Principal Environmental Scientist

Restriction on Disclosure and Use of Data

Statement of Limitations for the Contaminated Land and Acid Sulfate Soils Assessment of the Marinus Link project (Heybridge Converter Station) is provided in Appendix A.

CONTENTS

EXE	CUTIV	'E SUMMARY	V
ACF	ONYN	IS AND ABBREVIATIONS	VII
1.	INTF	RODUCTION	1
	1.1	Purpose of this report	1
	1.2	Project overview	2
	1.3	Assessment context	4
2.	ASS	ESSMENT GUIDELINES	5
	2.1	EPA Tasmania Guidelines	5
	2.2	Linkages to other technical studies	6
3.	LEG	ISLATION, POLICY AND GUIDELINES	7
	3.1	Environmental Management and Pollution Control Act 1994	7
	3.2	National Environment Protection (Assessment of Site Contamination) Measure	7
	3.3	State Policy on Water Quality Management (1997)	7
	3.4	Acid sulfate soils and rock	8
4.	PRO	JECT DESCRIPTION	9
	4.1	Overview	g
	4.2	Construction.	10
	4.3	Operation	10
	4.4	Decomissioning	10
5.	ASS	ESSMENT METHOD	12
	5.1	Study area	12
	5.2	Assessment objectives	12
	5.3	Scope of work	12
		5.3.1 Desktop assessment	12
		5.3.2 Targeted study area assessment	15
		5.3.3 Risk assessment	15
		5.3.4 Cumulative impact assessment	15
	5.4	Soil and surface water assessment method	17
		5.4.1 ASS sampling	17
		5.4.2 Soil stockpile sampling	21
		5.4.3 Surface water sampling	26
	5.5	Risk assessment method	29
	5.6	Assumptions and limitations	30

6.	EXIS	STING CONDITIONS	32
	6.1	Land use	32
	6.2	Topography	34
	6.3	Regional geology	34
		6.3.1 Geological units	34
		6.3.2 Acid sulfate soils	36
		6.3.3 Naturally occurring asbestos	38
	6.4	Hydrogeology	38
	6.5	Site history and previous reports	40
		6.5.1 Historical site use	40
		6.5.2 Summary of previous investigations	40
	6.6	Targeted soil and surface water sampling	46
		6.6.1 ASS sampling results	46
		6.6.2 Stockpile sampling results	49
		6.6.3 Surface water sampling results	50
		6.6.4 Data quality assessment	51
		6.6.5 Stockpile classification	51
7.	CON	ICEPTUAL SITE MODEL	54
	7.1	Nature and extent of contamination (sources)	54
		7.1.1 Soil impacts	54
		7.1.2 Surface water impacts	58
		7.1.3 Groundwater impacts	58
		7.1.4 Sediment and offshore impacts	59
		7.1.5 Potential ASS	59
	7.2	Potential exposure pathways	60
		7.2.1 Potential receptors	60
		7.2.2 Summary of conceptual site model	61
8.	RISI	K ASSESSMENT	63
	8.1	Management of excavated and surplus soil	63
	8.2	Acid sulfate soils causing degradation to flora and/or fauna if disturbed	65
	8.3	Exposure to asbestos fibres	66
	8.4	Management of routine construction and operational impacts	66
	8.5	Risk assessment summary	67
9.	INSF	PECTION AND MONITORING	69
10.	MAN	NAGEMENT AND MITIGATION MEASURES	70

11.	CONCLUSION	.73
12.	REFERENCES	.74

LIST OF TABLES

Table 2-1:	Tasmanian EIS Assessment guidelines addressed	5				
Table 2-2:	Technical studies	6				
Table 5-1:	Summary of potential cumulative impact assessment projects	16				
Table 5-2:	Summary of seven-step methodology for managing ASS impacts (DPIPWE, 2009)	17				
Table 5-3:	Summary of sampling locations	19				
Table 5-4:	ASS Sampling Methodology	21				
Table 5-5:	Stockpile sampling densities	22				
Table 5-6:	Stockpile Sampling Methodology	24				
Table 5-7:	Surface Water Sampling Methodology	26				
Table 5-8:	Descriptors used to classify likelihood and consequence	29				
Table 5-9:	Risk evaluation matrix	30				
Table 6-1:	Geological units	36				
Table 6-2:	Field Observations – soil sampling	46				
Table 6-3:	Summary of ASS field test screening criteria	47				
Table 6-4:	Results of acid sulfate soil testing	48				
Table 6-5:	Summary of ASS analysis – samples exceeding action criteria	49				
Table 6-6:	Field Observations – stockpile sampling	50				
Table 6-7:	Field Observations – surface water sampling	50				
Table 6-8:	Surface Water criteria exceedances	51				
Table 6-9:	Preliminary stockpile classification	52				
Table 6-10:	Stockpile human health and ecological criteria exceedances	53				
Table 7-1:	Summary of potential sources of contamination	54				
Table 7-2:	Estimates of waste soil categories for disposal	56				
Table 8-1:	Management and mitigation measures: management of soil	65				
Table 8-2:	Management and mitigation measures: ASS causing degradation to flora and/or fauna if disturbed	66				
Table 8-3:	Management and mitigation measures: management of routine construction and operational impacts	67				
Table 8-4:	Risk assessment summary					
	Management and mitigation measures					
LIST OF	FIGURES					
Figure 1:	General site figure					
Figure 2:	Project components considered under applicable jurisdictions (Marinus Link Pty Ltd 2022)					
Figure 3:	Study Area					
Figure 4:	Acid sulfate soil (ASS) sample locations					
Figure 5:	Plan of soil stockpile sampling locations					
Figure 6:	Surface water sample locations					
Figure 7:	Surrounding land use and topography					
Figure 8:	Regional Geology					
Figure 9:	Probability of ASS					
Figure 10:	Inferred groundwater contour plan					
Figure 11:						
Figure 12:						
Figure 13:	Conceptual site model	62				

APPENDICES

APPENDIX A: STATEMENT OF LIMITATIONS	A
APPENDIX B: SUMMARY OF HISTORIC REPORTS	В
APPENDIX C: TABLES	C
APPENDIX D: TEST PIT LOGS	D
APPENDIX E: FIELD NOTES	E
APPENDIX F: LABORATORY DOCUMENTS	F
APPENDIX G: QC DATA VALIDATION REPORT	G

EXECUTIVE SUMMARY

Marinus Link Pty Ltd (MLPL) contracted Tetra Tech Coffey Pty Ltd (Tetra Tech Coffey) to conduct an environmental impact assessment for Marinus Link, the proposed construction of a high-voltage direct current electricity interconnector between Tasmania and Victoria. This report presents the assessment of the Tasmanian component of Marinus Link, covering the Heybridge converter station and shore crossing area (to a distance of 3 nautical miles).

The objective of this assessment was to identify the potential for contamination and/or acid sulfate soils (ASS) to be present at the study area and to assess the risks and residual impacts to the environment and human health posed by the potential contamination. This assessment included a review of previous site investigations and publicly available information, as well as sampling and analysis of soil and surface water within the study area for contaminants of potential concern that may potentially cause impacts to human health or the environment.

This contaminated land and ASS impact assessment identified four potential hazards with a low to high risk of causing impacts to the environment without the application of additional controls (including three potential hazards to the environment arising from contamination) including:

- 1. Management of excavated soils including contaminated soils and asbestos (moderate risk),
- 2. ASS (moderate risk), and
- 3. Management of routine construction and operational impacts (low risk).

Management and mitigation measures have been developed for each of the identified potential environmental hazards, detailing the measures to be applied to manage potential impacts to the environment through construction and operation of Marinus Link. These management and mitigation measures are considered appropriate for the purposes of managing the potential risks to human health or the environment, in accordance with the environmental values to be protected for ambient air, land and water should they be implemented appropriately. With the implementation of the following areas for environmental management, the risk of impacts to human health and environment is reduced to Moderate to Very low:

- Manage excavated soils: Develop a contaminated land management plan that includes testing
 soils prior to excavation to confirm their contamination status and how to manage them (disposal,
 remediation etc) to mitigate potential impacts to environment (CL01. This also includes specific
 assessment for asbestos and ASS in soils and details how they will be managed. This reduces
 the risk of impact to the environment from moderate to low.
- ASS: Develop an ASS management controls (as a part of the contaminated land management plan) that includes requirements to test the soils at the site to confirm the extent of ASS to be disturbed, and how to manage potential impacts to the environment such as via acid neutralisation, avoidance or limiting groundwater dewatering (CL02). This reduces the risk of impact to the environment from moderate to low.
- Manage routine construction and operational impacts: Develop an environmental management plan for construction and operation phases to manage potential risks from construction activities (CL04). This reduces the risk of impact to the environment from low to very low.

The assessment of potential impacts to the environment proposed by the project have the potential to cause potentially unacceptable impacts to human health or the environment. However, the application of the management and mitigation measures, are considered to reduce the potential impacts to the environment to acceptable levels and would ensure that the site is acceptable for commercial or industrial land uses (as defined in the NEPM).

ACRONYMS AND ABBREVIATIONS

Acronyms/ Abbreviations	Definition	Acronyms/ Abbreviations	Definition	
ACM	Asbestos Containing Material	HVAC	High Voltage Alternative Current	
ADWG	Australian Drinking Water Guidelines	HVDC	High-Voltage Direct Current	
AFFF	Aqueous Film-Forming Foam	LOR	Limit Of Reporting	
AHD	Australian Height Datum	km	Kilometres	
ANZG	Australian And New Zealand Guidelines for Fresh And Marine Water Quality	kV	Kilovolt	
AS	Australian Standard	Lo	Oonah (Burnie) Formation	
ASRIS	Australian Soil Resource Information System	Lob	Oonah Formation	
ASS	Acid Sulfate Soils	MLPL	Marinus Link Pty Ltd	
BTEXN	benzene, toluene, ethylbenzene, xylene and naphthalene	MW	Megawatt	
CEC	Cation exchange capacity	NATA	National Association of Testing Authorities	
CEMP	Construction Environmental Management Plan	NEM	National Electricity Market	
COPC	Contaminants Of Potential Concern	NEMP	National Environmental Management Plan	
CSM	Conceptual Site Model	NEPC	National Environment Protection Council	
CrS	Chromium Reducible Suite	NEPM (ASC)	National Environment Protection (Assessment of Site Contamination) Measure 1999 (As Amended In 2013)	
Cwlth	Commonwealth of Australia	NOA	Naturally occurring asbestos	
DCCEEW	Department of Climate Change, Energy, Environment and Water	NZS	New Zealand Standard	
DEWLP	Department of Environment, Water, Land and Planning	NHMRC	National Health and Medical Research Council	
DGV	Default guideline value	nSv/hr	NanoSievert per hour	
DPIPWE	Department of Primary Industries, Parks, Water and the Environment	NOA	Naturally Occurring Asbestos	
DTP	Department of Transport and Planning	NWTD	North West Transmission Developments	
EC	Electrical Conductivity	NORM	Naturally Occurring Radioactive Material	

Acronyms/ Abbreviations	Definition	Acronyms/ Abbreviations	Definition
EPBC Act	Environment Protection and Biodiversity Conservation Act	OC	Organic Carbon
EIL	Ecological Investigation Level	OCP	Organochlorine Pesticides
EEA	Environment Effects Act	OPP	Organophosphate Pesticides
EES	Environment Effects Statement	PAH	polycyclic aromatic hydrocarbons
EIS	Environmental Impact Statement	РСВ	Polychlorinated biphenyls
EMPCA	Environmental Management and Pollution Control Act	PEV	Protected Environmental Value
EP Act	Environment Protection Act	PFAS	Per- and Poly- fluoroalkyl Substances
EPA	Environmental Protection Authority	PPE	Personal Protective Equipment
ERS	Environment Reference Standard	QA	Quality Assurance
ESL	Ecological Screening Level	QC	Quality Control
FSANZ	Food Services Australia and New Zealand	Qhbd	Cenozoic Cover Sequences
GED	General Environmental Duty	Qhwr	Quaternary Deposits - Littoral
HDD	Horizontal Directional Drilling	Qpsa	Quaternary Deposits - Aeolian
GV-high	Guideline Value - high	SPOCAS	Suspension Peroxide Oxidation Combined Acidity Sulfur
HIL	Health Investigation Level	TRH	Total Recoverable Hydrocarbons
HSL	Health Screening Level	TDS	Total Dissolved Solids

1. INTRODUCTION

The proposed Marinus Link (the project) comprises a high voltage direct current (HVDC) electricity interconnector between Tasmania and Victoria, to allow for the continued trading and distribution of electricity within the National Electricity Market (NEM).

The project was referred to the Australian Minister for the Environment 5 October 2021. On 4 November 2021, a delegate of the Minister for the Environment determined that the proposed action is a controlled action as it has the potential to have a significant impact on the environment and requires assessment and approval under the *Environment Protection and Biodiversity Conservation Act 1999* (Cwlth) (EPBC Act) before it can proceed. The delegate determined that the appropriate level of assessment under the EPBC Act is an environmental impact statement (EIS).

In July 2022 a delegate of the Director of the Environment Protection Authority Tasmania determined that the project be subject to environmental impact assessment by the Board of the Environment Protection Authority (the Board) under the Environmental Management and Pollution Control Act 1994 (Tas) (EMPCA).

On 12 December 2021, the former Victorian Minister for Planning under the Environment Effects Act 1978 (Vic) (EE Act) determined that the project requires an environment effects statement (EES) under the EE Act, to describe the project's effects on the environment to inform statutory decision making.

As the project is proposed to be located within three jurisdictions, the Tasmanian Environment Protection Authority (Tasmanian EPA), Victorian Department of Transport and Planning (DTP), and Australian Department of Climate Change, Energy, Environment and Water (DCCEEW) have agreed to coordinate the administration and documentation of the three assessment processes. Two EISs are being prepared to address the Tasmanian EPA requirements for the Heybridge converter station and shore crossing. A separate EIS/EES is being prepared to address the requirements of DTP and DCCEEW.

This report has been prepared for the Tasmanian jurisdiction as part of the two EISs being prepared for the project.

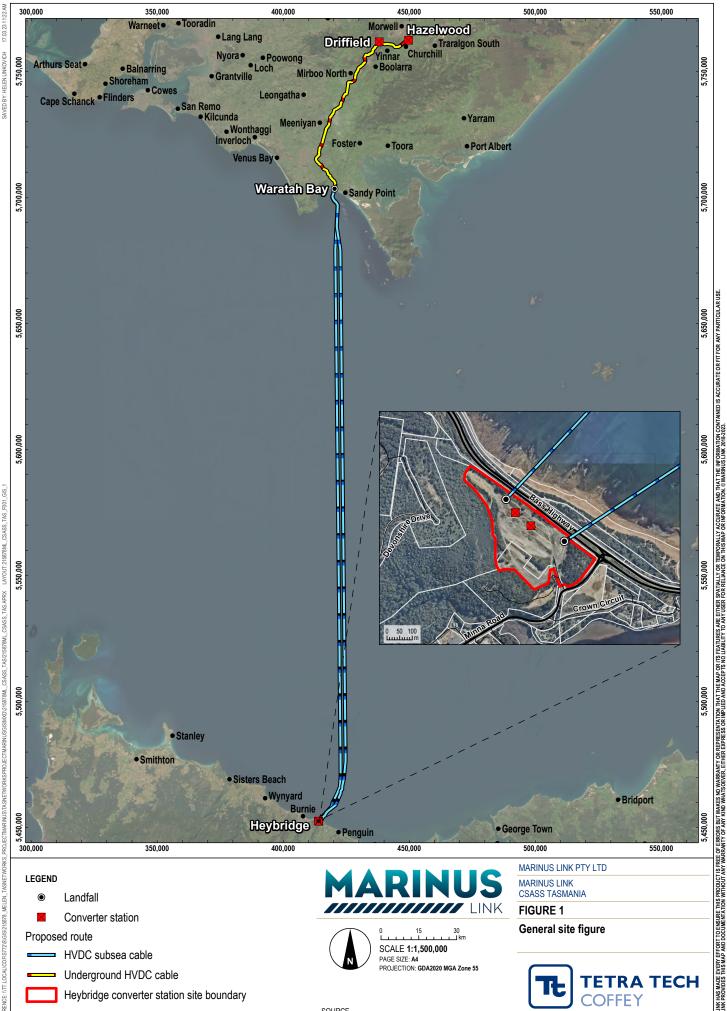
1.1 PURPOSE OF THIS REPORT

This study presents the results of the investigation into the potential for contamination and acid sulfate soil (ASS) to be present within the Tasmanian component of the project area.

The purpose of the study was to:

- Address the evaluation objectives outlined in the separate EIS guidelines prepared by the Tasmanian EPA and DCCEEW
- Investigate the potential for contamination and ASS to be present within the study area;
- Where potential contamination or ASS was identified, complete an appraisal of the risks to human health or the environment that may be posed by the potential contamination or ASS for the construction, operation and decommissioning of project infrastructure;
- Develop mitigation measures for the project to avoid or manage project risks and impacts;
 and,
- Evaluate residual risks and impacts of the project once mitigation has been implemented.

1.2 PROJECT OVERVIEW


The project is a proposed 1500-megawatt (MW) HVDC electricity interconnector between Heybridge in northwest Tasmania and the Latrobe Valley in Victoria (Figure 1). The project is proposed to provide a second link between the Tasmanian renewable energy resources and the Victorian electricity grids enabling efficient energy trade, transmission and distribution from a diverse range of generation sources to where it is most needed and will increase energy capacity and security across the NEM.

Marinus Link Pty Ltd (MLPL) is the proponent for the project and is a wholly owned subsidiary of Tasmanian Networks Pty Ltd (TasNetworks). TasNetworks is owned by the State of Tasmania and owns, operates and maintains the electricity transmission and distribution network in Tasmania.

Tasmania has significant renewable energy resource potential, particularly hydroelectric power and wind energy. The potential size of the resource exceeds both the Tasmanian demand and the capacity of the existing Basslink interconnector between Tasmania and Victoria. The growth in renewable energy generation in mainland states and territories participating in the NEM, coupled with the retiring of baseload coal-fired generators, is reducing the availability of dispatchable generation that is available on demand.

Tasmania's existing and potential renewable resources are a valuable source of dispatchable generation that could benefit electricity supply in the NEM. The project will allow for the continued trading, transmission and distribution of electricity within the NEM. It will also manage the risk to Tasmania of a single interconnector across Bass Strait and complement existing and future interconnectors on mainland Australia. The project is expected to facilitate the reduction in greenhouse gas emissions at a state and national level.

Interconnectors are a key feature of the future energy landscape. They allow power to flow between different regions to enable the efficient transfer of electricity from renewable energy zones to where the electricity is needed. Interconnectors can increase the resilience of the NEM and make energy more secure, affordable and sustainable for customers. Interconnectors are common around the world including in Australia. They play a critical role in supporting Australia's transition to a clean energy future.

SOURCE

Proposed route from Tetra Tech Coffey. Imagery from ESRI Online.

DATE:17.03.23 PROJECT:754-MELEN215878ML FILE:215878ML CSASS_TAS_F001_GI

1.3 ASSESSMENT CONTEXT

Land can be contaminated from anthropogenic activities or naturally occurring due to potential ASS.

Disturbance of contaminated land due to project activities has the potential to pose risks to the environment and human health during construction/operational maintenance, or through unsuitable conditions for the proposed project land-use. Disturbance of existing contamination may lead to:

- Health risks to workers or site users/occupiers;
- Impacts to ecological receptors;
- Risk to the integrity of structures;
- Lead to pollution events if disturbance increases contamination runoff or leaching to groundwater.

ASS or acid sulfate rock are characterised as containing metal sulfide minerals that oxidise when exposed to air and can result in the release of sulfuric acid in runoff from the soil/rock or acidification of groundwater. The acidic conditions can cause corrosion of metal and concrete that is in direct contact with the acidic soil or water. The acid can also cause direct harm to terrestrial or aquatic flora or fauna via low pH and acid scalding, as well as contribute to the release of metals at concentrations that may be toxic to plants and aquatic animals. The generation of ASS can be attributed to development activities including excavation of large volumes of soil, extracting or lowering groundwater, coastal or inshore dredging and filling land over potential ASS.

This assessment provides an overview of the portions of the study area considered to have an increased risk of encountering contamination, wastes or potential ASS that may be disturbed by the project. The report discusses the risks and residual impacts to the project and relevant receptors to inform the development of management and mitigation measures to avoid or reduce or manage risks and impacts.

2. ASSESSMENT GUIDELINES

This section outlines the assessment guidelines relevant to contaminated land and ASS and the linkages to other technical assessments completed for the project. Two EISs are being prepared to address the EIS guidelines published by EPA Tasmania for the converter station and shore crossing.

2.1 EPA TASMANIA GUIDELINES

EPA Tasmania have published two sets of guidelines (September 2022) for the preparation of an EIS for the project converter station and shore crossing. A separate set of guidelines have been prepared for each of these project components.

- Environmental Impact Statement Guidelines Marinus Link Pty Ltd Converter Station for Marinus Link, September 2022, Environment Protection Authority Tasmania (Tas converter station EIS guidelines)
- Environmental Impact Statement Guidelines Marinus Link Pty Ltd Shore Crossing for Marinus Link, September 2022, Environment Protection Authority Tasmania (Tas shore crossing EIS guidelines)

Table 2-1 summarises the relevant sections of the EIS assessment guidelines being addressed as part of this assessment.

Table 2-1: Tasmanian EIS Assessment guidelines addressed

Conve	rter station	Shore Crossing	Report Section
S 5.2	A description of the general physical characteristics of the site/route and surrounding area, including topography, local climate, geology, geomorphology, soils (including erodibility and acid sulfate soils), vegetation, fauna, groundwater and surface drainage (including waterways, lakes, wetlands, coastal areas etc).	S 9.2 A description of the general physical characteristics of the site/route and surrounding area, including topography, local climate, geology, geomorphology, soils (including erodibility, potential contamination, and acid sulfate soils), vegetation, fauna, groundwater and surface drainage (including waterways, lakes, wetlands, coastal areas etc), and seabed characteristics.	Section 6
S 6.1	Potentially contaminated material.	S 10.2 Potentially contaminated material and ASS.	Section 8
S 6.2	Terrestrial natural values.	S 10.1 Terrestrial natural values	Section 8
S 6.4	Water quality (surface and groundwater)	S 10.5 Water quality (surface and groundwater)	Section 8
-		S 10.3 Marine natural values	Section 8
-		S 10.4 Marine water quality	Section 8
S 6.5	Air Quality	-	Section 8
S 6.6	Waste Management	S 10.8 Waste Management	Section 8

2.2 LINKAGES TO OTHER TECHNICAL STUDIES

This report is informed by or informs other Tasmanian technical assessments outlined in Table 2-2.

Table 2-2: Technical studies

Technical study	Relevance to this assessment
Heybridge Groundwater impact assessment (Tetra Tech Coffey, 2024)	Provided the hydrogeological setting for baseline characterisation
Tasmania surface water impact assessment (Alluvium, 2024)	Provided the hydrology setting for baseline characterisation
Terrestrial geomorphology & soils (Environmental GeoSurveys, 2024)	Provided the geomorphology and geological setting for baseline characterisation
Marine Ecology and Resource Use Impact Assessment (EnviroGulf, 2024)	Assessed the potential impacts from contaminated seabed sediment disturbance and included controls for managing impacts.

3. LEGISLATION, POLICY AND GUIDELINES

3.1 ENVIRONMENTAL MANAGEMENT AND POLLUTION CONTROL ACT 1994

The responsibility for the management of contaminated land is shared by the Tasmanian EPA and local Councils under EMPCA.

If a site poses a known or potential unacceptable risk to human health and/or the environment, or environmental harm is likely to occur, the Director of EPA may issue a Part 5A Notice (an investigation notice, a remediation notice, a site management notice or an environment protection notice) on a person(s), which can include an individual or a company.

3.2 NATIONAL ENVIRONMENT PROTECTION (ASSESSMENT OF SITE CONTAMINATION) MEASURE

National Environment Protection Measures (NEPMs) are statutory instruments that specify national standards for a variety of environmental issues. In Tasmania, the *National Environment Protection Council (Tasmania) Act* 1995 references the *National Environment Protection (Assessment of Site Contamination) Measure 1999* (amended 2013).

In Tasmania, NEPMs are State Policies in accordance with section 12A of the *State Policies and Projects Act 1993*.

3.3 STATE POLICY ON WATER QUALITY MANAGEMENT (1997)

The State Policy on Water Quality Management (1997) provides a framework to manage water quality for all Tasmanian surface waters. Section 7.1 of the policy states that "Water quality objectives may be set for surface waters and groundwaters in Tasmania by determining which of the following protected environmental values (PEVs) should apply to each body of water":

- A Protection of aquatic ecosystems
- B Recreational water quality and aesthetics
- C Raw water for town drinking water supply
- D Raw water for homestead supply
- E Agricultural water uses (including irrigation, stock watering)
- F Industrial water supply

The policy requires that PEVs be set for all Tasmanian surface waters. The policy also sets PEVs for groundwater based on those values that are likely to be possible based on the reported level of total dissolved solids (TDS).

This study does not include the investigation of groundwater but considers the potential for contamination of the land (natural or anthropogenic) that may impact on surface water or groundwater quality at or near the study area.

The policy also includes guidance on the management of contamination in Tasmania. It states that:

"Where a point source of pollution might cause environmental nuisance or material or serious environmental harm, limits should be set on the permissible concentrations and/or loads of pollutants which may be present in discharges to waters from point sources of pollution, and these limits be implemented through permits, authorisations, economic measures, or other instruments as appropriate." (Clause 16.1)

"Emissions from diffuse sources of pollution should be reduced and managed through the development and implementation of best practice environmental management, and so as not to prejudice the achievement of water quality objectives" (Clause 30.1)

3.4 ACID SULFATE SOILS AND ROCK

There is no specific acid sulfate legislation in Tasmania. However, control of related impacts may come under the "general environmental duty" section of EMPCA, where: "A person must take such steps as are practicable or reasonable to prevent or minimise environmental harm or environmental nuisance caused, or likely to be caused, by an activity conducted by that person."

The State Coastal Policy 1996 (as amended 2009) also may cover acid sulfate management, as it aims to protect the intrinsic value of coastal areas and support sustainable use of coastal areas.

The Department of Primary Industries, Parks, Water and the Environment (DPIPWE) *Tasmanian Acid Sulfate Soil Management Guidelines* (DPIPWE 2009) present the recommended approach to assessment and management for ASS in Tasmania.

4. PROJECT DESCRIPTION

4.1 OVERVIEW

The project is proposed to be implemented as two 750 MW circuits to meet transmission network operation requirements in Tasmania and Victoria. Each 750 MW circuit will comprise two power cables and a fibre-optic communications cable bundled together in Bass Strait and laid in a horizontal arrangement on land. The two 750MW circuits will be installed in two stages with the western circuit being laid first as part of stage one, and the easter cable in stage two.

The key project components for each 750 MW circuit are, from south to north are:

- HVAC switching station and HVAC-HVDC converter station at Heybridge in Tasmania. This is
 where the project will connect to the North West Tasmania transmission network being
 augmented and upgraded by the North West Transmission Developments (NWTD).
- Shore crossing in Tasmania adjacent to the converter station.
- Subsea cable across Bass Strait from Heybridge in Tasmania to Waratah Bay in Victoria.

In Tasmania, a converter station is proposed to be located at Heybridge near Burnie. The converter station will facilitate the connection of the project to the Tasmanian transmission network. There will be two subsea cable landfalls at Heybridge with the cables extending from the converter station across the Bass Strait to Waratah Bay in Victoria. The preferred option for shore crossings is horizontal directional drilling (HDD) to about 10 m water depth where the cables will then be trenched, where geotechnical conditions permit.

Approximately 255 kilometres (km) of subsea HVDC cable will be laid across Bass Strait. The preferred technology for the project is two 750 megawatt (MW) symmetrical monopoles using ±320 kV, cross-linked polyethylene insulated cables and voltage source converter technology. Each symmetrical monopole is proposed to comprise two identical size power cables and a fibre-optic communications cable bundled together. The cable bundles for each circuit will transition from approximately 300 m apart at the HDD exit to 2 km apart in nearshore (Tasmanian coastal waters).

This assessment is focused on the Tasmanian terrestrial and shore crossing section of the project. This report will inform the two EISs being prepared to assess the project's potential environmental effects in accordance with the legislative requirements of the Tasmanian government (Figure 2).

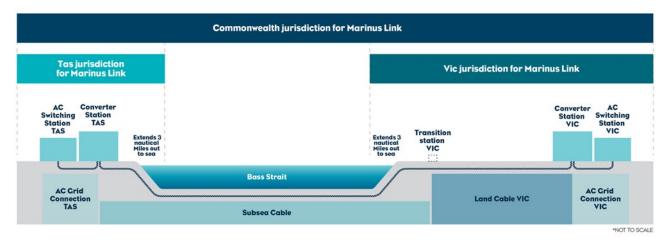


Figure 2: Project components considered under applicable jurisdictions (Marinus Link Pty Ltd 2022).

The project is proposed to be constructed in two stages over approximately five years following the award of works contracts to construct the project. On this basis, stage 1 of the project is expected to be operational by 2030, with Stage 2 to follow, with final timing to be determined by market demand. The project will be designed for an operational life of at least 40 years.

4.2 CONSTRUCTION

A description of elements of the project during the construction phase that have the potential to impact on environmental values considered within this impact assessment are summarised below.

- Shore crossing horizontal directional drilling (HDD)
- Converter station site preparation, earthworks and civil works

These activities can impact on environmental values through mechanisms such as:

- Localised leaks of oils, fuels and chemicals from plant and equipment on site such as containers, batteries, vehicles, underground services or tanks (i.e., fuel or septic) that may present a risk to human health, ecological receptors (terrestrial flora or fauna), or an aesthetic impairment, causing degradation of environment.
- Areas of contamination/ wastes (natural or anthropogenic) uncovered during project development that result in exposure to human or ecological receptors and result in health effects or ecological damage.
- Disturbance of potential ASS that may cause degradation to flora and/or fauna due to acidic runoff.
- Removal of contaminated infrastructure that results in impacts to ecological or human receptors.

4.3 OPERATION

Ground-disturbing works are not anticipated during the standard operation of the project infrastructure. The following operational project activities have been considered:

- Accidental spills and leaks of transformer oil, battery fluids, and diesel fuel stored in above ground tanks.
- Accidental spills of fuels, oils or chemicals onsite during maintenance activities.

4.4 DECOMISSIONING

The operational lifespan of the project is a minimum 40 years. At this time the project will be either decommissioned or upgraded to extend its operational lifespan.

Decommissioning will be planned and carried out in accordance with regulatory requirements at the time. A decommissioning plan in accordance with approvals conditions will be prepared prior to planned end of service and decommissioning of the project.

Requirements at the time will determine the scope of decommissioning activities and impacts. The key objective of decommissioning is to leave a safe, stable and non-polluting environment.

In the event that the project is decommissioned, all above-ground infrastructure will be removed, the site rehabilitated.

Decommissioning activities required to meet the objective will include, as a minimum, removal of above ground buildings and structures. Remediation of any contamination and reinstatement and rehabilitation of the site will be undertaken to provide a self-supporting landform suitable for the end land use, which is assumed to be industrial land.

Decommissioning and demolition of project infrastructure will implement the waste management hierarchy principles being avoid, minimise, reuse, recycle and appropriately dispose. Waste management will accord with applicable legislation at the time.

Decommissioning activities may include recovery of land and subsea cables. The conduits and shore crossing ducts will be left in-situ as removal may cause significant environmental impact. Subsea cables will be recovered by water jetting or removal of rock mattresses or armouring to free the cables from the seabed.

A decommissioning plan will be prepared to outline how activities will be undertaken, and potential impacts managed.

ASSESSMENT METHOD

5.1 STUDY AREA

The study area is located in Heybridge, Tasmania, (as displayed in Figure 3) and is the planned location of a converter station and switching station that will allow the connection of the project subsea cable to the Tasmanian transmission network. The study area also includes the shorecrossing and areas where cable conduits will be installed via HDD boring to a distance of 3 nautical miles off-shore.

The Heybridge converter station site is the former site of a Tioxide factory that ceased operation in 1996, with associated infrastructure being demolished in 1998. The history of the site is detailed in section 6.5.1.

5.2 ASSESSMENT OBJECTIVES

The objectives of the contaminated land and ASS study for the project in Tasmania are to:

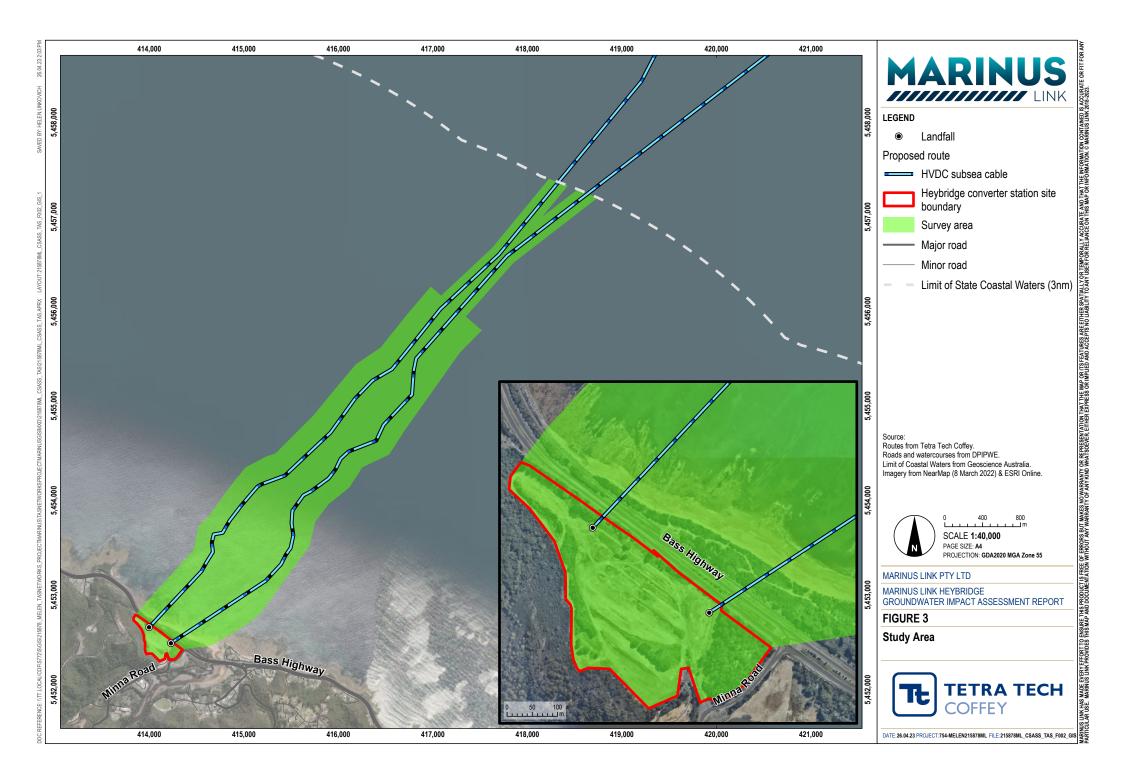
- Identify areas of contaminated land or ASS within the study area (including offshore areas where contaminated sediments may be present).
- Assess potential impacts from construction, operation and decommissioning of the project related to contaminated land or ASS and identify management and mitigations measures and potential avoidance or management measures.
- Outline of future management plan requirements (e.g., CEMP or ASS management plan).
- Perform a preliminary waste classification.
- Address the contaminated land code of the Tasmanian Planning Scheme.

5.3 SCOPE OF WORK

To meet the objectives of the assessment, the following scope of works was completed to inform this assessment.

5.3.1 Desktop assessment

The desktop assessment included review of publicly available information (including aerial photographs, maps, plans, registers and other information) to establish the potential sources of contamination within the study area.


Identification of portions of the study area with a potential of either natural or anthropogenically sourced contamination to be present.

Several reports have been prepared for the study area that provide details as to the nature and extent of contamination and ASS and were reviewed in the preparation of this report. The reports reviewed included:

- WCC (2007a) Site Contamination Assessment, Former Tioxide Factory site, Heybridge (the "Front site"), William C. Cromer, 6 June 2007
- WCC (2007b) Follow-up Site Contamination Assessment, Bullant Ridge, at the former Tioxide Factory site, Heybridge, William C. Cromer, 14 July 2007
- ES&D (2020) Due Diligence, Former Tioxide factory site Heybridge, V4, Environmental Service
 Design, 30 October 2020

- pitt&sherry (2007a) Former Tioxide Australia Pty Ltd, Ocean Outfall Tunnel Assessment Report, pitt&sherry, August 2007
- Synnot & Wilkinson (1996a) Tioxide Australia Soil Contamination Assessment Report, Burnie, Tasmania, May 1996
- Synnot & Wilkinson (1996b) Tioxide Australia, Draft 2, Environmental Decommissioning and Rehabilitation Plan, May 1996
- Synnot & Wilkinson (1997) Tioxide Australia Pty Ltd, 1996 Marine Survey Report, September 1997
- pitt&sherry (2020) Heybridge Converter Station, Environmental Review of Due Diligence Report, Rev A, pitt&sherry, 16 November 2020
- SA Radiation (2020) Heybridge Tioxide Site Radiation Survey, SA Radiation, 1 December 2020
- GBG (2022) Project Marinus Heybridge Land Remediation Geophysical Investigation, GBG Group, 15 March 2022
- Jacobs (2022a) Ground Conditions Factual Report, Project Marinus Heybridge Converter Station Ground Investigation, Rev A, Jacobs, 1 April 2022
- Jacobs (2022b) Heybridge Converter Station Geotechnical Interpretive Report, Project Marinus
 Heybridge Converter Station Geotechnical Site Investigation, Rev A, Jacobs, 24 May 2022)
- Tetra Tech Coffey (2022) Marinus Link, Tioxide sediment analysis report, Rev A, Tetra Tech Coffey, 28 July 2022
- IPM (2022) Marinus Link, Marinus Link Development Site, Bass Highway, Heybridge, TAS 7316
 Site Surface Asbestos Inspection Report, IPM Consulting Services, October 2022
- pitt&sherry (2022) Marinus Link Contamination and Acid Sulfate Soils Desktop Review Findings for the Tasmanian Component, dated 19 December 2022
- Marine Solutions (2024) HVDC Cable Crossing of Tioxide Outfall, Summary of Works, August 2024.

The details of the review of these reports are provided in Appendix B, and the summary of the findings of the review provided in Section 6.5. The information from these reports was utilised to identify the potential sources (including the nature and extent) of contamination within the study area and identify areas where additional sampling and analysis was required in order to inform the risk assessment for the study.

5.3.2 Targeted study area assessment

As several areas of potential contamination were identified that had not been assessed, targeted assessment of specific sources of contamination was undertaken within the Heybridge converter station site. The works included:

- Completion of a site walkover of the targeted areas to visually confirm the potential presence or absence of contamination or contaminating activities where access was available.
- Targeted soil assessment of areas that had not previously been investigated and had a potential
 to contain contamination or ASS that may either cause an impact if disturbed or may require
 additional management during construction including the collection and analysis of soil samples
 for contamination and ASS analysis.
- Targeted surface water sampling from onsite stormwater detention ponds and drains.

5.3.3 Risk assessment

On completion of the desktop and targeted study area assessments the following scope of works was completed:

- Review of the outcomes of the baseline assessment to verify appropriate interpretation of the desktop and field data and its alignment with regulatory guidance.
- Preparation of a conceptual site model (CSM) to identify the nature and extent of contamination and ASS within the study area (the sources of contamination), the potential receptors that may be exposed to or impacted by disturbance of the contamination/ASS, and the pathways by which receptors may be exposed. Where a pathway for exposure is not present, the potential for impacts to receptors does not exist. The CSM has been prepared in accordance with guidance in the NEPM and is an important step in characterising the potential for contamination/ASS to impact on receptors as it identifies the exposure pathways which are present and guides the development of potential management and mitigation measures that generally either:
 - interrupt or minimise the exposure pathway,
 - o remove the source; or
 - o remove the receptor (where this is practicable).

Further discussion of the CSM is provided in Section 6.6.5.

- Assessment of potential risks to the environment values (human and ecological receptors) from
 existing contamination (natural or anthropogenic) identified within the study area, including
 potential risks that may arise during construction, operation and decommissioning of the project.
- Identification of management and mitigation measures to reduce the potential risks to the environment from any potential contamination identified by the assessment.

5.3.4 Cumulative impact assessment

The EIS guidelines includes requirements for the assessment of cumulative impacts. Cumulative impacts result from incremental impacts caused by multiple projects occurring at similar times and within proximity to each other.

To identify possible projects that could result in cumulative impacts, the International Finance Corporation (IFC) guidelines on cumulative impacts have been adopted. The IFC guidelines (IFC, 2013) define cumulative impacts as those that 'result from the successive, incremental, and/or combined effects of an action, project, or activity when added to other existing, planned, and/or reasonably anticipated future ones.'

The approach for identifying projects for assessment of cumulative impacts considers:

- Temporal boundary: the timing of the relative construction, operation and decommissioning of other existing developments and/or approved developments that coincides (partially or entirely) with Marinus Link.
- Spatial boundary: the location, scale and nature of the other approved or committed projects
 expected to occur in the same area of influence as Marinus Link. The area of influence is
 defined as the spatial extent of the impacts a project is expected to have.

Proposed and reasonably foreseeable projects were identified based on their potential to credibly contribute to cumulative impacts due to their temporal and spatial boundaries. Projects were identified based on publicly available information at the time of assessment. The projects considered for cumulative impact assessment across Tasmania and in Bass Strait are summarised in the below table.

Table 5-1: Summary of potential cumulative impact assessment projects

Project	Distance from site
North West Transmission Developments (NWTD)	Adjoins Heybridge site to the south and extends over 100 km to the southeast and southwest of the site.
Robbins Island Renewable Energy Park	Approximately 90 km to the west
Jim's Plain Renewable Energy Park	Approximately 85 km to the west
Robbins Island Road to Hampshire Transmission Line	Approximately 25 km to the south and west
Bass Highway upgrades between Deloraine and Devonport	Approximately 35km to the east
Bass Highway upgrades between Cooee and Wynard	Approximately 10 km to the west
Hellyer Windfarm	Approximately 50 km to the west
Table Cape Luxury Resort	Approximately 24 km to the west
Youngmans Road Quarry	Approximately 45 km to the south-east
Port Latta Windfarm	Approximately 55 km to the west
Port of Burnie Shiploader Upgrade	Approximately 6 km to the west
Quaylink – Devonport East Redevelopment.	Approximately 35 km to the east

Cumulative impacts from contamination or ASS associated with the above list of projects would be highly localised to the areas where the individual projects disturb potential contamination or ASS. It is unlikely that contamination or ASS that may be disturbed associated with the above projects would result in impacts that may overlap with the potential impacts from this project (due to the distances involved, and the generally localised areas that impact may occur) with the exception of parts of the NWTD project that interfaces with the Heybridge site. Cumulative impacts that may occur that are relevant to the study area may include local residential or commercial redevelopments of land surrounding the site, or upgrades to the Bass Highway or rail line in the vicinity of the site. However, the magnitude of impacts from these potential projects will be minor due to the limited footprints of these projects, and low potential of contamination being present, or ASS being disturbed.

The NWTD project will include the installation of several overhead transmission towers to the south of the study area in close proximity to several former landfills and potential ASS associated with the Blythe River estuary. However, the proposed siting of the overhead towers and any associated ground disturbance is a reasonable distance from potential landfills and no ASS is mapped as being present in the vicinity of the NWTD transmission corridor to the south of the study area. The proposed siting and elevation of the transmission towers (above the valley floor) is also such that they would be unlikely to interact with groundwater during drilling in any significant way that may result in impacts from contaminated land or ASS.

Any disturbance of potential contamination or ASS would be limited to the excavation of tower footprints (with any contaminated soils either re-used or disposed in accordance with EPA bulletin 105) and the scale of such disturbances are such that any potential impacts would be manageable and result in low to very low impacts to the environment.

The existing former offshore Tioxide pipeline and outfall tunnel that extend from the Converter Station site offshore have been considered in this study and whether disturbance of the pipeline or the outfall tunnel may result in potential impacts to the environment.

5.4 SOIL AND SURFACE WATER ASSESSMENT METHOD

Based on the outcome of the desktop assessment (refer to Section 6.5), sampling of soils (for ASS), stockpiles and surface water was undertaken within the study area to provide additional data to inform the risk assessment. This section describes the method applied for the soils and surface water sampling.

5.4.1 ASS sampling

The Tasmanian Acid Sulfate Soil Management Guidelines (DPIPWE, 2009) provides guidance on the approach to undertaking assessment and management of ASS in Tasmania. The guidelines describe a seven-step process for managing potential ASS on project sites. A summary of the steps, and their relevance to the methodology for assessing ASS within the study area is provided in Table 5-2.

Table 5-2: Summary of seven-step methodology for managing ASS impacts (DPIPWE, 2009)

Step	Criteria	Comments	
1	Project is below 20 m above Australian Height Datum (m AHD) or will disturb ground below 20 m AHD	The majority of the study area is below 20 m AHD	
2	Project likely to disturb >100 m ³ of material	The project will disturb more than 100 m ³ of soils	
3	Check DPIPWE or Australian Soil Resource Information System (ASRIS) map	Project is within area mapped as having a low probability of ASS present (5-70% chance)	
4	Project in area predicted to contain low or high amounts of ASS: Conduct desktop risk assessment		
5	Undertake site investigation to determine presence, depth and extent of ASS materials	Due to meeting the triggers for steps 1 to 4, a site investigation is required including field sampling and laboratory analysis	
6	Conduct field sampling and laboratory analysis		
7	Develop ASS Management Plan to minimise environmental harm	To be developed once full project disturbance has been quantified in detailed design.	

The assessment of the potential for ASS to be present has been designed using previously collected data (Jacobs 2022a) and the guidance provided in the DPIPWE (2009) guidelines. The guidelines recommends that soils are sampled at a rate of two locations per hectare (ha) for sites with an area above 4 ha. The area of the site (where construction activities may result in disturbance of ASS if present) is approximately 5 ha, which the guidelines recommend sampling from at least 10 locations to identify the potential presence of ASS.

Jacobs (2022a) undertook soil sampling at five locations across the broader converter station site, with acid sulfate field testing, and laboratory analysis undertaken.

Soil sampling was completed at an additional eight test-pit locations along the northern boundary of the study area to assess for the presence of ASS, as displayed in Figure 4. The locations were spaced at 50-metre intervals along the northern boundary of the site as it was considered that this area was more likely to contain undisturbed soil profiles (as opposed to the other areas where factory demolition may have disturbed the deeper soil profile), and it was assumed that this area was more likely to have shallower groundwater (and containing submerged soils).

Given that the northern boundary was closer to the coastline, this was a factor in locating the samples at this location. The locations also allowed for appraising potential ASS in the areas where the HDD will occur.

Each sampling test-pit was excavated to a depth of 1.5 m below the ground surface. Whilst deeper sampling may have provided additional data as to the potential depth of ASS, soil instability and the potential for test-pit collapse limited sampling depths to 1.5 m.

5.4.1.1 Applicable guidelines

There is no specific acid sulfate legislation in Tasmania. However, control of related impacts may come under the "general environmental duty" section of EMPCA, where: "A person must take such steps as are practicable or reasonable to prevent or minimise environmental harm or environmental nuisance caused, or likely to be caused, by an activity conducted by that person."

The State Coastal Policy 1996 (as amended 2009) also may cover acid sulfate management, as it aims to protect the intrinsic value of coastal areas and support sustainable use of coastal areas.

The Tasmanian Acid Sulfate Soil Management Guidelines (DPIPWE 2009) present the recommended approach to assessment and management for ASS in Tasmania.

Other quidelines and standards for sample collection and analysis include the following:

- ASC NEPM (1999) National Environment Protection (Assessment of Site Contamination)
 Measure (1999) as amended 2013 (NEPM (ASC)).
- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Governments and Australian state and territory governments,
 Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines
- EPHC & NRMMC 2011, <u>National guidance for the management of acid sulfate soils in inland aquatic ecosystems</u>, Environment Protection and Heritage Council and the Natural Resource Management Ministerial Council, Canberra

5.4.1.2 Assessment criteria

Assessment criteria for the investigation of ASS within the study area had been adopted from the Tasmanian Acid Sulfate Soil Management Guidelines (DPIPWE 2009) which presents the recommended approach to assessment and management for ASS in Tasmania.

5.4.1.3 Sampling methodology

The field ASS assessment methodology is summarised in Table 5-4. Sampling locations are shown in Figure 4. Location details of the sampling points are provided in the table below.

Table 5-3: Summary of sampling locations

Test Pit Location	Easting*	Northing*	Depth (m bgs)
HEY1	413938	5452704	1.5
HEY2	413983	5452669	1.5
HEY3	414032	5452644	1.5
HEY4	414103	5452596	1.5
HEY5	414152	5452564	1.5
HEY6	414196	5452532	1.5
HEY7	414231	5452454	1.5
HEY8	414205	5452514	1.4

Notes

^{* -} The accuracy of locations is approximately +/- 15m due to the limitations of the hand-held GPS used to measure locations.

Table 5-4: ASS Sampling Methodology

Activity	Details
Soil Sampling	Soil samples were collected at depths of 0-0.1m (surface) and half-metre intervals or changes in lithology throughout the test-pits.
	An excavator was used to collect samples at the nominated depths at each location.
	Upon collection samples were immediately sealed within laboratory supplied snap lock bags and had the air squeezed out from each sample. Samples were then frozen to minimise potential effects of oxidation.
	Soil sampling locations were installed in the areas where ASS was most likely to occur, as well from locations spread across the converter station site. The adequacy was considered appropriate as it include coverage across the site. The sampling frequency included collecting and analysing samples from multiple depths throughout the sampling locations. The sampling locations provide a reasonable indication of the potential extent of ASS that may be encountered at the site to inform potential impacts to the environment.
Soil Screening	During sampling, soils were assessed for visual and olfactory indications of potential contamination, including observations of vegetation distress, water-logged soils and extraneous material. Details of these observations are recorded by samplers in field logs provided in Appendix D.
Decontamination	Soil samples were collected directly from the excavator bucket whilst wearing disposable nitrile gloves to avoid cross-contamination between samples. The method for sampling involved the excavator collecting a largely undisturbed 'chunk' of soil from the wall or base of the test-pit, and then splitting the soil sample open to collect soil that had not come into contact with the excavator bucket.
	As such, decontamination of sampling equipment was not required.
Sample Preservation	Samples were placed in laboratory supplied snap lock bags. Samples were stored on ice (<4°C) in an ice box while on site and were frozen (below -18°C) within six hours of collection. Samples were refrigerated while in transit to the selected laboratories.
Sample Analysis	Samples were submitted to National Association of Testing Authorities, Australia (NATA) accredited laboratories Eurofins and ALS (inter-laboratory duplicates only) for all specified analysis. A copy of the NATA Analytical reports is provided in Appendix F.

5.4.1.4 Analytical suite

Potential ASS samples were submitted for the following analysis:

- Chromium Reducible Suite (CrS) 14 samples.
- ASS field test 21 samples.

5.4.2 Soil stockpile sampling

In 2022, pitt&sherry (2022) undertook an inspection of the Converter Station site and identified up to nine soil stockpiles on the site. During the field inspections undertaken as a part of this study, the location of the pitt&sherry stockpiles and other potential soil stockpiles was undertaken.

Several soil mounds are present on the site and sampling of the soil mounds was undertaken to identify if the soils were potentially contaminated.

Some of the soil mounds area elongated, particularly along the northern boundary of the site and appear to have been installed as a visual barrier to the site. Several other larger soil mounds were observed at isolated locations on the site. Many small mounds of soils (generally less than 1 m³) were present in areas to assist with water drainage, or from onsite road forming. These smaller soil mounds were not included in sampling and considered to be part of the site soil surface.

The larger soil mounds along the northern boundary and at isolated locations across the site were designated as 'stockpiles', to differentiate between the large and small soil mounds.

A summary of the approximate volumes of the stockpiles, and the sampling undertaken is provided in the table below.

Table 5-5: Stockpile sampling densities

Stockpile ID	Description	Volume (m3)	Samples (collected / suggested by Bulletin 105)
SP1	Soil stockpile SP1 from the pitt&sherry report was located on the south-western side of the site and did not appear to be present on site, and the location comprised a slightly elevated area of soil that appeared to have been cut into on its southern side for the former rail-siding and appeared to align approximately with the original site surface. Consequently, this area of soil was not sampled.	N/A	-
SP2	Located on the northern boundary, near the western side of the site. Dimensions were approximately 70 m long by 6 m wide, by up to 2.5 m high.	525	3 / 21
SP3	Located on the northern boundary, near the western side of the site. Dimensions were approximately 50 m long by 5 m wide, by up to 2 m high. Eastern portion not sampled due to being in a mapped former asbestos area.	250	1 / 10
SP4	Soil stockpile SP4 from the pitt&sherry report was located to the north of SP5 in the central western portion of the site. During inspection, the soil stockpile could not be differentiated from the surrounding soils and appeared to be a very slightly elevated (<0.2 m) soil mound. Consequently, this area of soil was not sampled.	N/A	-
SP5	Located in central eastern portion. Approx 16 m long, by 5 m wide, by 1 m high	40	3/2
SP6	Soil stockpile SP6 from the pitt&sherry report was located in the northern central portion of the site. During inspection, the soil stockpile could not be identified. Consequently, this area of soil was not sampled.	N/A	-
SP7	Soil stockpile SP7 from the pitt&sherry report was located to the south of the site and appeared to be a mound of soil that was representative of the original site surface and not a soil stockpile. Consequently, this area of soil was not sampled.	N/A	-
SP8	Located on northern boundary. Approx 15 m long, by 3 m wide, by 1.5 m high	34	2/2
SP9	Located on northern boundary – eastern end. Approx 55 m long, by 11 m wide, with the western end approximately 3 m high, and the eastern end approximately 2 m high.	770	4 / 31
SP10	Located adjacent the former rail siding in the southern portion of the site. Approximately 30 m long, by 3 m wide, by 2 m high.	90	3 / 4

The sampling densities for some stockpiles was below the 'general sampling density rule' of one sample per 25 m³ for homogeneous soils included in EPA information bulletin No. 105. However, the bulletin notes that the number of samples required for adequate classification of soil is *dependent on the volume of material, the estimated standard deviation of contamination concentrations, and the estimated average concentration.* Consequently, additional sampling of some stockpiles will be required to inform the classification of the soils should they require offsite disposal. The sampling

undertaken provided a preliminary indication of the contamination status of the soils in the stockpiles to assess the potential risks to the environment.

5.4.2.1 Applicable guidelines

Applicable guidelines and standards for sample collection and analysis include the following:

- ASC NEPM (1999) National Environment Protection (Assessment of Site Contamination)
 Measure (1999) as amended 2013 (NEPM (ASC)).
- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Governments and Australian state and territory governments,
 Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines
- Tasmanian Government (2020) Environmental Management and Pollution Control (Waste Management) Regulations 2020.
- EPA Tasmania (2018) Information Bulletin No. 105, Classification and Management of Contaminated Soil for Disposal.

5.4.2.2 Assessment criteria

Based on the current land use and proposed use of the study area, contaminant screening criteria is sourced from:

Preliminary Waste Classification

 EPA Tasmania (2018) Information Bulletin No. 105, Classification and Management of Contaminated Soil for Disposal.

On-site Retention

- NEPM (ASC) for human health for soils and sediment:
 - Health Investigation Guidelines (HIL) D Commercial/Industrial use for human health impact for soils and sediments
 - Health Screening Levels (HSL) D for Vapour Intrusion Commercial/Industrial use for human health impact (sand – 0-1 m)
 - Ecological Investigation Guidelines (EIL) for terrestrial ecological impact for soils and sediments in terrestrial settings
 - Ecological Screening Levels (ESLs) for terrestrial ecological impact for soils and sediments in terrestrial settings
 - Table 1B(7) TRH Management Limits for Commercial/Industrial use (coarse soil)

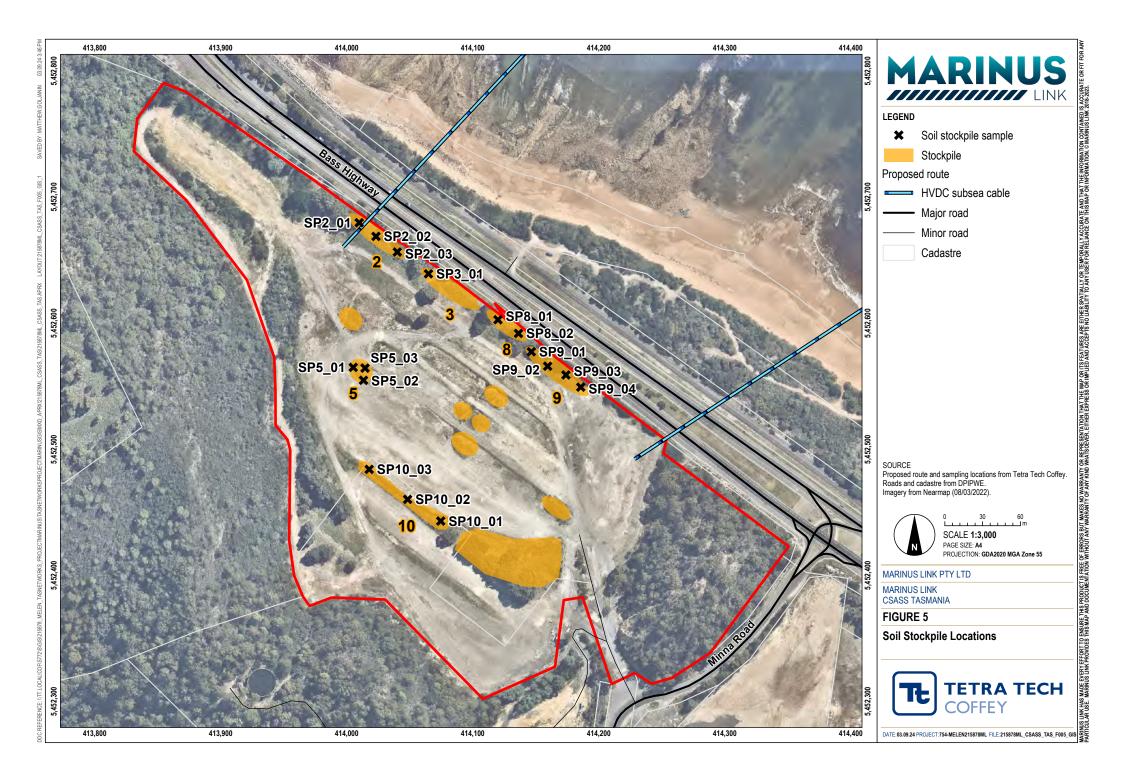
In the absence of site-specific data, the following values have been conservatively adopted to calculate EILs for copper, nickel, chromium (III) and zinc:

- Cation exchange capacity (CEC): 5 cmol/kg dwt
- Organic carbon (OC) content: 1%
- Clay: 10%

The lowest pH value reported as part of this investigation (4.4 for sample HEY7_0.9-1.1) has also been used to calculate EILs.

5.4.2.3 Stockpile sampling methodology

The stockpile sampling methodology is summarised in Table 5-6. Sampling locations are shown in Figure 5.


Table 5-6: Stockpile Sampling Methodology

Activity	Details
Stockpile Sampling	Samples were collected from six soil stockpiles. Samples were collected at depths of approximately 0.2m below the surface of the stockpile. Samples from stockpiles along the northern boundary of the site (stockpiles 2, 3, 8 and 9) were collected using an excavator. Samples from stockpiles 5 and 10 were collected by hand directly into laboratory supplied containers.
Soil Screening	During sampling, soils were assessed for visual and olfactory indications of potential contamination, including observations of extraneous material. Details of these observations are recorded by samplers in field logs provided in Appendix E.
Decontamination Procedure	Soil samples were collected directly from the excavator bucket whilst wearing disposable nitrile gloves to avoid cross-contamination between samples. As such, decontamination of sampling equipment was not required.
Sample Preservation	Samples were placed in laboratory supplied jars. Samples were stored on ice (<4°C) in an ice box while on site and were frozen (below -8°C) within six hours of collection. Samples were refrigerated while in transit to the selected laboratories.
Sample Analysis	Samples were submitted to National Association of Testing Authorities, Australia (NATA) accredited laboratories Eurofins and ALS (inter-laboratory duplicates only) for all specified analysis. A copy of the NATA analytical reports is provided in Appendix F.

5.4.2.4 Analytical suite

Stockpile samples were submitted to NATA accredited laboratories for the following analysis:

- Total Recoverable Hydrocarbons (TRH), benzene, toluene, ethylbenzene, xylene and naphthalene (BTEXN), polycyclic aromatic hydrocarbons (PAH) and metals (As, Cd, Cr, Cu, Ni, Pb, Hg) – 12 samples.
- Tas EPA 105 Screen 4 samples.

5.4.3 Surface water sampling

Surface water runoff was observed to flow north off the Heybridge converter station site to Tioxide Beach via subsurface stormwater drains and into Bass Strait. The contamination status of surface water at the converter station site has not been previously assessed as there has been no surface water present during previous investigation. It was considered that sampling the current surface water drainage system will provide an indication of the current baseline condition of surface water on the site. It is likely that excavation proposed during the construction of the site may result in contamination to surface water, and the baseline condition of surface water was established to allow comparison.

Surface water sampling was completed from the stormwater drain within the converter station site and at the stormwater drain outlet on Tioxide Beach. The effluent tunnel that emerges on the eastern end of Tioxide was blocked and did not appear to be flowing.

5.4.3.1 Applicable guidelines

Applicable guidelines and standards for sample collection and analysis include the following:

- ASC NEPM (1999) National Environment Protection (Assessment of Site Contamination)
 Measure (1999) as amended 2013 (NEPM (ASC)).
- ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Governments and Australian state and territory governments,
 Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-quidelines

5.4.3.2 Assessment criteria

Based on the current land use and proposed use of the study area, contaminant screening criteria is sourced from:

ANZG 2018. Australian and New Zealand Guidelines for Fresh and Marine Water Quality.
 Australian and New Zealand Governments and Australian state and territory governments,
 Canberra ACT, Australia. Available at www.waterquality.gov.au/anz-guidelines

5.4.3.3 Surface water sampling methodology

The surface water sampling methodology is summarised in **Table 5-7**. Sampling locations are shown in Figure 6.

Table 5-7: Surface Water Sampling Methodology

Activity	Details
Surface Water Sampling	Samples were collected from two surface water locations (HEY-SW1 and HEY-SW2-Alt). Both samples were collected using dedicated sterilized sampling bottles or syringes, avoiding collection of any surface material.
Surface Water Screening	During sampling, surface waters were assessed for visual and olfactory indications of potential contamination. Details of these observations are recorded by samplers in field logs provided in Appendix E.
Decontamination Procedure	Surface water samples were collected using dedicated sterilized sampling bottles or syringes whilst wearing disposable nitrile gloves to avoid cross-contamination between samples. As such, decontamination of sampling equipment was not required.
Sample Preservation	Samples were collected in laboratory supplied bottles. Samples were stored on ice (<4°C) in an ice box while on site and were frozen (below -8°C) within six hours of collection. Samples were refrigerated while in transit to the selected laboratories.

Activity	Details
Sample Analysis	Samples were submitted to National Association of Testing Authorities, Australia (NATA) accredited laboratories Eurofins and ALS (inter-laboratory duplicates only) for all specified analysis. A copy of the NATA analytical reports is provided in Appendix F.

5.4.3.4 Analytical suite

Surface water samples were submitted to NATA accredited laboratories for the following analysis:

- Metals (As, Cd, Cr, Cu, Ni, Pb, Hg, Ag, Sn, Mo, Se, Zn) Cr⁶⁺
- Total recoverable hydrocarbons (TRH)
- PAH
- Phenols
- OCP
- PCB
- VOCs
- Vinyl chloride

5.5 RISK ASSESSMENT METHOD

A qualitative environmental risk analysis has been conducted for the study area to assist in identifying the controls required to avoid and if this is not possible, reduce risks and to identify issues of concern for other technical studies to consider both during the impact assessment stage, and for future design phases.

The risk assessment was focussed on potential risks to environmental receptors including construction and maintenance workers at the site, potential ecological receptors including flora and fauna and potential risks to groundwater or surface water from contamination disturbance that may occur during construction.

The risk analysis has been based on the risk-based approach from the Australian/New Zealand Standard for risk management (AS/NZS ISO 31000:2018).

The assessment of potential risks was based on the likelihood of the impact to the environment (health or ecological) occurring and the potential consequences (i.e., measure of severity should this occur). The descriptors used to classify the likelihood and consequence are detailed in Table 5-8. Assessment specific consequences have been developed that allow for comparison of analytical results and exceedances of screening criteria and are included in Table 5-8.

The level of risk was then determined by combining the likelihood and consequence to rank the potential risk as very high, high, moderate, low or very low according to the risk evaluation matrix in Table 5-9.

Table 5-8: Descriptors used to classify likelihood and consequence

Descriptor	Description
Likelihood	Description
Almost certain	A hazard, event and pathway exist, and harm has occurred in similar environments and circumstances elsewhere and is expected to occur more than once over the duration of the project activity, project phase or project life.
Likely	A hazard, event and pathway exist, and harm has occurred in similar environments and circumstances elsewhere and is likely to occur at least once over the duration of the project activity, project phase or project life.
Possible	A hazard, event and pathway exist, and harm has occurred in similar environments and circumstances elsewhere and may occur over the duration of the project activity, project phase or project life.
Unlikely	A hazard, event and pathway exist, and harm has occurred in similar environments and circumstances elsewhere but is unlikely to occur over the duration of the project activity, project phase or project life.
Rare	A hazard, event and pathway are theoretically possible on this project and has occurred once elsewhere, but not anticipated over the duration of the project activity, project phase or project life.
Consequence	
Severe	In-situ concentrations of contaminants in soils exceeds NEPM Health Investigation Levels (HILs) / Health Screening Levels (HSLs) and presents an immediate risk to the health of persons accessing the project site. Mitigation measures to manage major impacts are likely to be extensive or complex, requiring a high level of resources and may involve regulatory intervention.
Major	The disturbance of in-situ contamination with concentrations that exceed NEPM HILs / HSLs; Ecological Investigation Levels (EILs) / Ecological Screening Levels (ESLs); or ANZG (2018) sediment upper guideline values (GV-high) and potentially present an acute risk to the health of persons accessing the project site, or which result in the mobilisation of the contaminants within the immediate environment and is sufficient to cause adverse impacts to the local environment and long-term impacts in the receiving environment. Careful management or avoidance can mitigate adverse effects.

Descriptor	Description
Moderate	The disturbance of soil containing environmentally significant levels of one or more contaminants with concentrations that exceed screening criteria for ecological receptors (NEPM ESL / EIL and/or ANZG GV-high); human health (HSLs / HILs), which results in the mobilisation of the contaminants within the immediate environment, which is sufficient to cause adverse impacts to the local environment and long-term impacts in the receiving environment. Appropriate management measures can mitigate the potential impacts.
Minor	The disturbance of soil containing environmentally significant levels of one or more contaminants with concentrations exceeding screening criteria for ecological receptors (NEPM ESL / EIL and/or ANZG default guideline values - DGV) and highly sensitive human receptors (nominally HIL / HSL A), but are below screening criteria for commercial / industrial land uses (nominally HIL / HSL D), which is sufficient to cause adverse impacts to the local environment and impacts in the receiving environment. Appropriate management measures can mitigate the potential impacts.
Negligible	The disturbance of soil containing isolated occurrences of environmentally significant levels of a contaminant (i.e. exceeding EIL / ESL and/or ANZG DGV, but not HSL / HIL), which may result in mobilisation of small amounts of contaminants within the immediate receiving environment. Degradation of the greater receiving environment (being areas outside of the study area) is unlikely with no measurable degradation to the local receiving environment. Monitoring of potential impact may be an appropriate response rather than implementation of mitigation measures.

Table 5-9: Risk evaluation matrix

		Likelihood						
		Rare	Unlikely	Possible	Likely	Almost certain		
eo	Negligible	Very low	Very low	Very low	Low	Moderate		
e	Minor	Very low	Low	Low	Moderate	Moderate		
긆	Moderate	Low	Low	Moderate	High	High		
JSe	Major	Low	Moderate	High	Very high	Very high		
Conse	Severe	Moderate	High	Very high	Very high	Very high		

5.6 ASSUMPTIONS AND LIMITATIONS

The following assumptions and limitations have been made during the assessment:

- As a conservative measure, we have assumed that any potential source of contamination within
 the investigation area may be disturbed by the project regardless of the construction methodology
 or proximity to final disturbance areas.
- The demolition of factory buildings on the site was undertaken in the mid-1990s, however remnants of footings (such as concrete blocks and bricks) are present in some areas of the site which have limited the sampling of soils in some isolated locations. Generally the footings have comprised pier or rim footings that are not continuous, and previous sampling locations may have had to be moved from design grids to allow sampling of soils from some of the factory areas. Sampling undertaken across the site as a part of Cromer (2007a), Synnot & Wilkinson (1996), Tioxide (1997, & 1998) and ES&D (2020) has been completed across the former factory areas and identified the contamination as detailed in this report. However, there is a possibility that some soil sampling locations met with refusal on concrete blocks or bricks in the former factory area and were not able to be sampled below the concrete/bricks. As locations which were met with refusal were not documented within any of the reports as data gaps, we have assumed that alternative adjacent locations were sampled. Any potential data gaps from refusal on concrete blocks or bricks are considered to represent only a very small portion of the site that may not have been sampled. A site inspection and sampling program of soil disturbance areas is required during the pre-construction phase to confirm the nature and extent of contamination in these locations (if any). The exact location of concrete blocks or bricks that have not been able to be

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

assessed is not directly noted in any report other than the reports noting that "footings have made it difficult to sample soils in some areas".

- We have assumed that potential ASS is present beneath the shore area to the low-tide line based
 on the results of on-shore and off-shore testing, that there are limited sediments overlying the
 rocky seabed in the near shore area, and the inability to undertake soil/sediment testing in the
 intertidal zone and near-offshore areas.
- We have assumed that the effluent tunnel was decommissioned in-situ, with the effluent pipeline
 and all tunnel materials retained in the approximate location of the effluent tunnel alignment. We
 have also assumed that any contamination that may have been present either in the tunnel or
 pipeline are still present on the site.
- The converter station site is a former factory site and covered with varying thickness of fill. As detailed in the *Heybridge Foundations and Construction Technical Memo* (Jacobs 2024), the majority of the fill soils will be geotechnically unsuitable for constructing foundations for the proposed converter station site. On the basis that the filling on the site was unsuitable for construction, the memo made a conservative assumption that the entire thickness of filling from the development area on the site will require excavation and removal from the site. This was because the fill soils were unlikely to be suitable for geotechnical fill if reused. The thickness of fill ranged between approximately 1 to 2.5 m and equated to approximately 62,200 m³ across the site. For the purposes of this assessment, we have assumed that all filling will be required to be managed, and how it will be managed will be documented in a waste management plan.

EXISTING CONDITIONS

This section describes the existing conditions and values within the study area based on the information obtained from the intrusive site works and review of previous site investigation reports (listed in Table 2-2).

The objective is to document all values that could be affected by the project and to provide context to explain what the baseline conditions mean and why they are important.

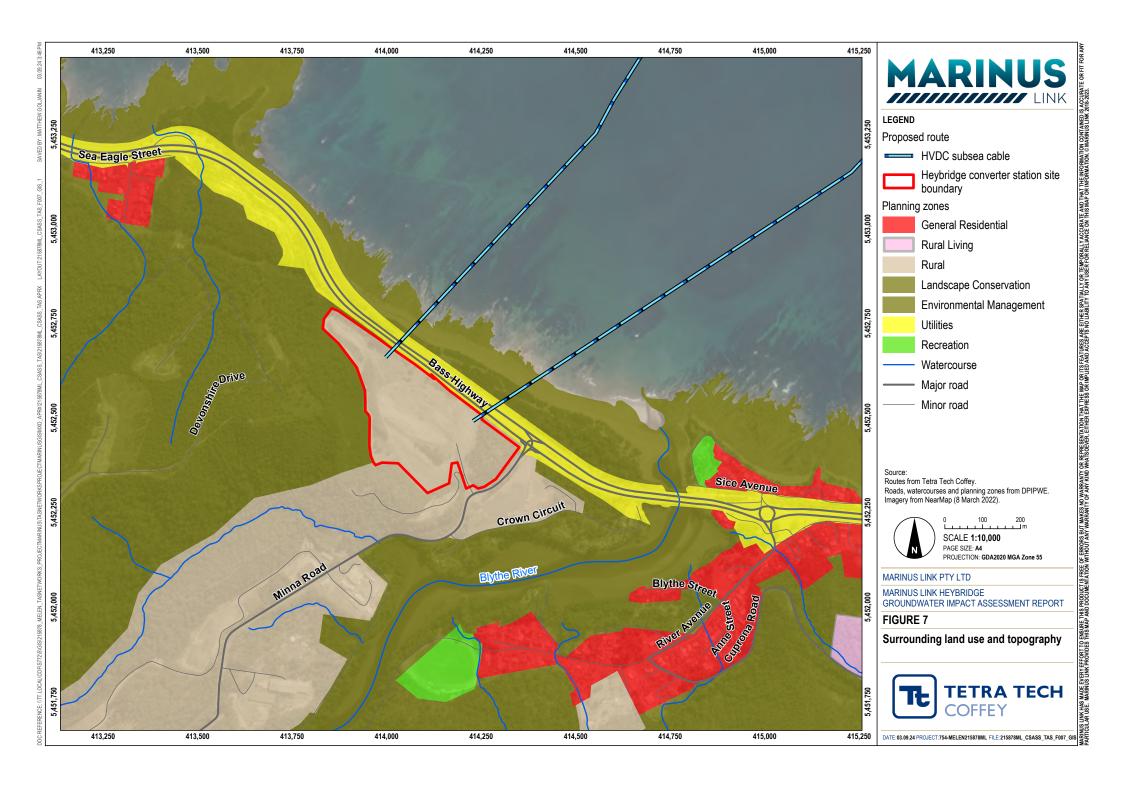
The assessment of contaminated land and ASS existing conditions considered the following features:

- Land use (Section 6.1)
- Topography (Section 6.2)
- Regional geology (including ASS and naturally occurring asbestos (NOA)) (Section 6.3)
- Hydrogeology (Section 6.4)
- Site history and previous reports (Section 6.5)
- Summary of previous contamination assessment report findings (Section 6.5.2
- Results of targeted sampling (Section 6.6)

6.1 LAND USE

According to the NRE Tasmania ListMap, the land tenure of the proposed converter station site is listed as Private Freehold and is classified as a Rural Living (zone 20) under the Burnie Local Provisions Schedule. The site is currently vacant, largely undeveloped, with sparse grasses and gravel hardstands occupying the majority of the site. Minimal vegetation currently exists on the site.

Historically, the Heybridge converter station site was used as a paint pigment factory by Tioxide Australia. The factory commenced operation in 1949 the factory was demolished by 1998.


Rehabilitation activities were reported to have commenced immediately following the site's closure in 1996; the details of the remediation completed, and the current contamination status of the site is unknown.

The land surrounding the proposed development site is largely unsealed, vacant and comprises of native forest, bushlands and habitats associated with the Blythe River located approximately 240 m to the southeast (Figure 6). The north of the study area is bordered by a sealed highway (Bass Highway) which separates the proposed redevelopment site from the Bass Strait shore front (approximately 100 m north). A small number of residential properties are located to the west and south, with a small rural town located along Blythe River to the southeast.

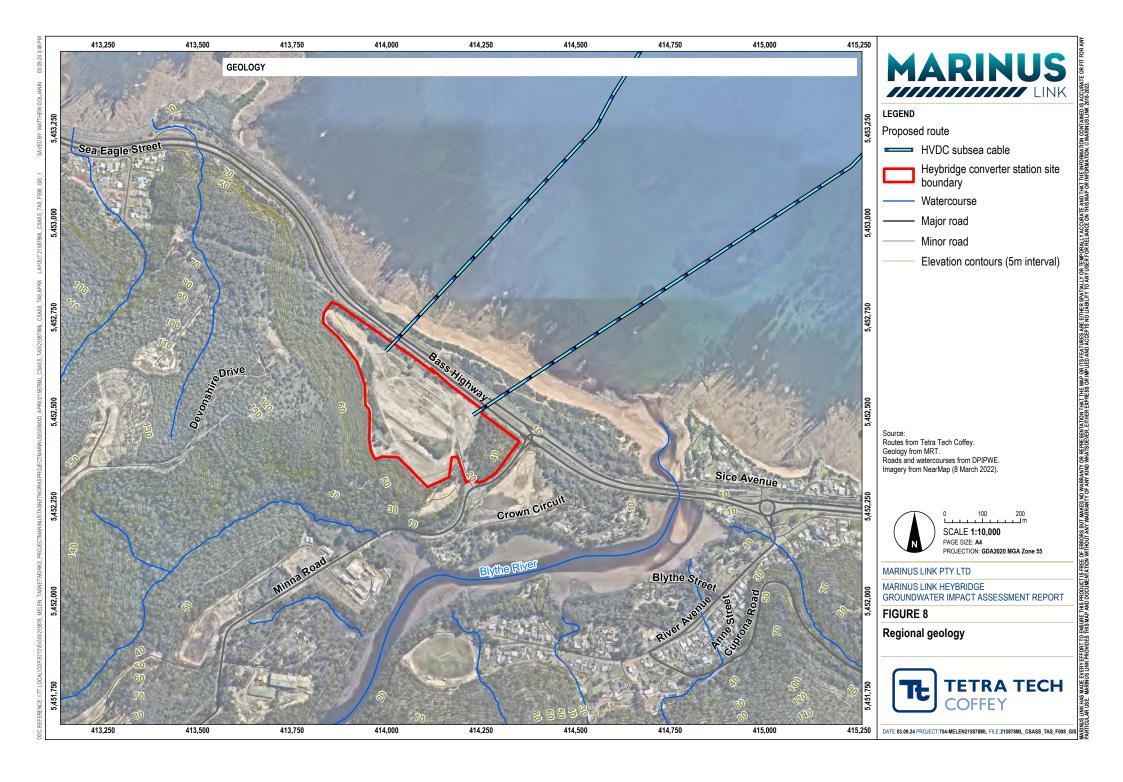
Surrounding land within the study area is zoned for the following uses (shown on Figure 7):

- Further areas of Rural Living (zone 20) to the south with an associated Priority Vegetation Area overlay,
- Landscape Conservation (Zone 22), Environmental Management (Zone 23) to the north, south and west.
- Areas of General Residential (Zone 8) and Recreation (Zone 28) follow the right bank of Blythe River estuary and are mostly positioned outside of the study area.

No agricultural land exists within the study area.

6.2 TOPOGRAPHY

The surface elevation of the land-based study area ranges from 0 to approximately 25 m above Australian height datum (AHD) with the land sloping from the southern portion of the converter station site down towards the shore. Higher topographic elevations are present on the larger land parcel at the eastern and western ends (up to 40 m AHD); however these areas are outside of the project disturbance footprint associated with potential contaminated land or ASS impacts.


6.3 REGIONAL GEOLOGY

6.3.1 Geological units

The site is located within the Sheffield Element, which is one of several Precambrian aged geological blocks in the north of Tasmania. The site is mapped as being underlain by more modern Quaternary deposits of aeolian sand, and river and marine gravels, sand and clays, which are expected to overly the Precambrian aged Burnie and Oonah Formation (Po, Lo) bedrock of the Sheffield Element. This formation is comprised of pale grey coloured interbedded mudstone, sandstone and siltstone, and is expected to include an upper weathered horizon.

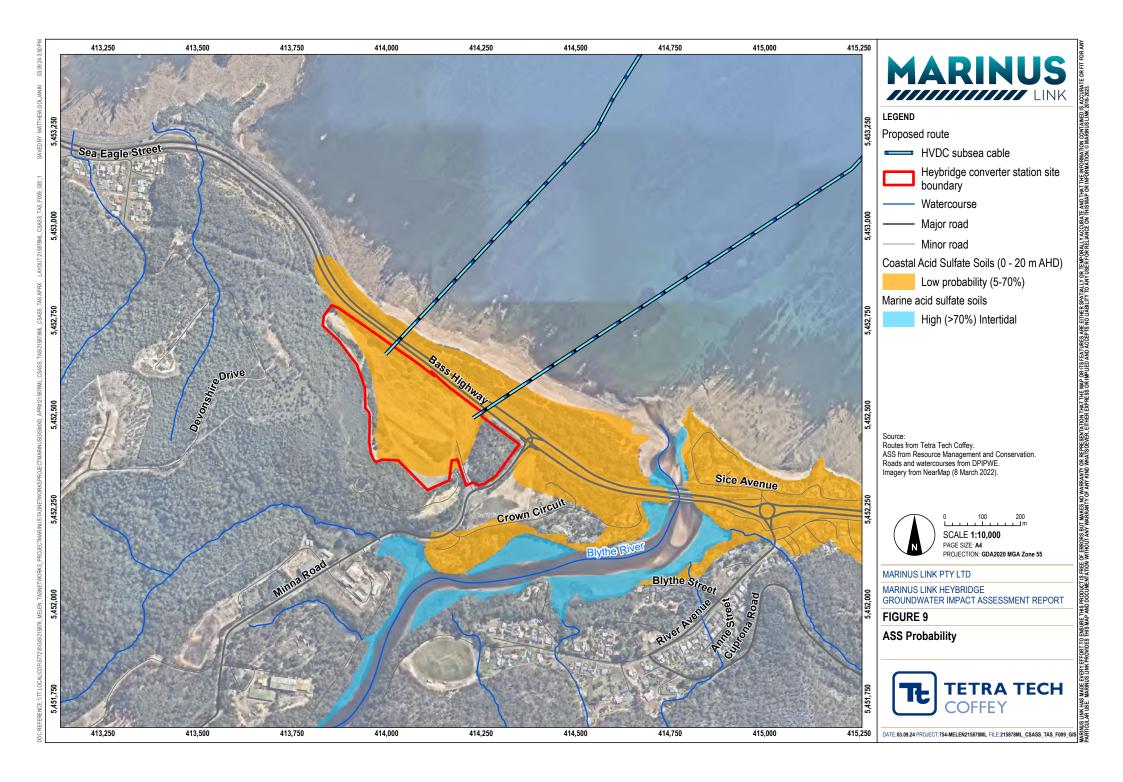
The more recent Quaternary sands, gravels and clays are deposited in the lower elevation embayment of the outcropping Burnie and Oonah Formation bedrock, which extends across the Bass Highway to the coastal landside landfall zone. The bedrock outcrops where the topography rises steeply around the site to the west, south and east. Interbedded Tertiary basalts are present in the region but expected to be absent from the study area.

Figure 8 shows the regional geology.

The Mineral Resources Tasmania (2012) digital geological atlas map (sheet 4045) Burnie and the Tasmanian Government Department of State Growth (2017) geological map of Northwest Tasmania (1:25,000) indicate that the study area is underlain by the geological units listed below in Table 6-1.

Table 6-1: Geological units

Geological Unit	Symbol	Age	Description	Location
Quaternary Deposits - Aeolian	Qpsa	Quaternary (Pleistocene)	Older aeolian sand of coastal plain.	Covers the majority of the study area.
Quaternary Deposits - Littoral	Qhwr	Quaternary (Holocene)	Sand of stabilised longitudinal beach ridges.	North of study area along sand dunes.
Cenozoic Cover Sequences	Qhbd	Quaternary (Holocene)	Beach sand, sand dunes and beach gravel.	North of study area along beach.
Oonah (Burnie) Formation	Lo	Neo- Proterozoic	Quartzwacke turbidite sequence of sandstone, siltstone and well bedded black slaty mudstone.	South and west of study area as well as north of Tioxide beach.
Oonah Formation	Lob	Proterozoic	Albite dolerite, metabasalt.	North of Tioxide beach.


6.3.2 Acid sulfate soils

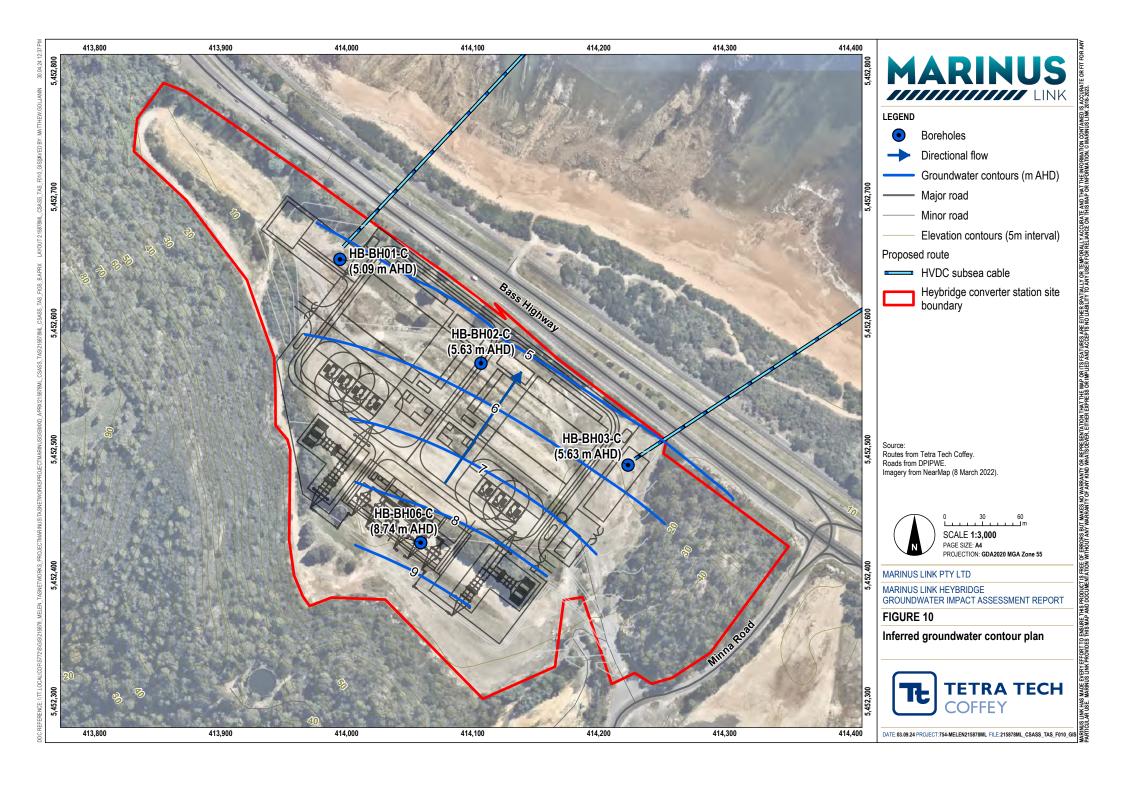
ASS containing metal sulphides can be present within highly mineralised areas of Tasmania, particularly where oxidation of these metal sulphides takes place. This can be through:

- · Hydrothermal alteration of metal sulphide-containing rocks and soils; and,
- Microbial decomposition of organic matter in water-logged soils and sediments containing metal sulphides (usually pyrite).

According to the National Acid Sulfate Soils Atlas there is a low probability (6-70%) that ASS exist within the study area. Given the proximity to areas of high probability (greater than 70%) of ASS being present and proximity to the coast, intrusive ASS testing works were completed at the site and detailed in Section 5.4.1.

Figure 9 shows the probability of ASS.

6.3.3 Naturally occurring asbestos


NOA is generally encountered within basement rocks and ultramafic (such as serpentinites) volcanic rocks. As there are no known ultramafic rocks intersecting the site it is considered that the likelihood of encountering NOA within the study area is very low.

6.4 HYDROGEOLOGY

The Oonah Formation fractured rock (sandstone and siltstone) aquifer is the primary aquifer at the study area with groundwater previously encountered at depths of 1 to 3 mbgl (Jacobs, 2022a).

TDS values recorded for groundwater samples historically collected at the study area ranged from 700 to 1,300 mg/L (Cromer, 2007) while Jacobs (2022a) reported electrical conductivity (EC) between 213 and 615 μ S/cm in groundwater sampled from test pits at the site. Groundwater was inferred to flow to the north (Bass Straight) as shown in Figure 10.

Further details of the hydrogeology are provided in the Groundwater Impact Assessment report (Tetra Tech Coffey 2024).

6.5 SITE HISTORY AND PREVIOUS REPORTS

6.5.1 Historical site use

Historically, the proposed converter site was used as a paint pigment factory by Tioxide Australia (formerly known as Australian Titan Products [pre-1972]), which is a subsidiary of British Titan Products Ltd England. The factory commenced operation in 1949 and produced up to 35,000 tons of paint pigment (titanium dioxide) per year. Economic factors caused closure of the plant in 1996, and the factory was subsequently demolished by 1998. Titanium dioxide pigments were produced at the factory from ilmenite mined in the Capel area in Western Australia.

Titanium dioxide is a non-toxic white pigment used in products ranging from paint, plastics, printing ink, paper, flooring, cement products, wall coverings, cosmetics, ceramics, rubber and textiles. The Heybridge site was chosen because of the availability of sulfuric acid, cheap electricity, local coal, water and access to the deep-water port of Burnie. The location of the site also facilitated the direct discharge of effluent into Bass Strait. While it is unknown what volume or types of waste were discharged, the Heybridge factory was subjected to criticism for the discolouration of the ocean and coast. It is understood that iron salts effluent (ferro sulfates) generated during operations were responsible for causing significant discolouration (red) of the sea water and beach sands, which extended more than a kilometre along the coast. Following the 1973 State Government Environmental Protection Act, Tioxide Australia invested in reducing the volume of waste being discharged to Bass Strait.

Demolition of the factory was completed in 1998 however concrete footings and reinforcement, as well as deleterious materials (building rubble), were noted as still being present by Jacobs (2022b).

There is known contamination present within the study area that is associated with the former Tioxide factory, including naturally occurring radioactive materials (NORM). NORM, consisting of uranium (U238), thorium (Th232) and their decay products, occur at various concentrations in the titanium ore used at the site. U238 and Th232 become concentrated as titanium ore is processed, resulting in levels that can exceed regulatory exemption levels in waste materials such as mineral sludges, dusts and sands (Jacobs, 2022a). Radiation investigation completed at the site is summarised in section 6.5.2.5.

Most recently the site was used as a lumber yard between 2015 and 2022.

A review of EPA Tasmania's list of regulated premises shows that the converter station site is not the subject of any EPA issued notices.

One regulated premise is located within 500m of the converter station comprising the Ixom Operations – Minna Road Chemical Plant. This site is approximately 300m to the south of the converter station site and is listed as having a 1A2 Chemical works – manufacture Permit, which also include an Environment Protection Notice (EPN).

6.5.2 Summary of previous investigations

This section provides a summary of the findings of the review of the previous environment assessments undertaken at the site and separated into the relevant contaminated media or contamination type. The details of the reviews are provided in Appendix B.

6.5.2.1 Soil Contamination

The key findings regarding the contamination status of the soil within the study area reported by previous investigations include the following:

- A grid-based soil investigation was completed by WCC (2007a) and identified concentrations of lead at one test pit and hydrocarbons in shallow groundwater at two separate test pits. However, these locations were further investigated by ES&D (2020) and determined to be very localised, and the contaminant concentrations were below commercial/industrial screening criteria (NEPM HIL/HSL D). Hydrocarbons were also reported in a similar area by Jacobs (2022a).
- Jacobs (2022a) excavated nine test pits to a maximum depth of 3 m bgs and submitted a total of 13 primary samples for laboratory analysis.
- No visual or olfactory indicators of contamination were observed at the sample locations completed by Jacobs (2022a).
- Natural soils (weathered clays and siltstone) were encountered at depths ranging from 0.3 1.5 mbgl (Jacobs, 2022a).
- Results reported for samples collected by Jacobs (2022a) were all below adopted health, ecological and management limit guideline values for commercial/industrial use.
- The majority of results reported for the samples collected by Jacobs (2022a) were below EPA Tasmania IB105, Table 2, Fill Material (Level 1) Max Total Concentrations with the exception of arsenic (23 mg/kg one sample only), manganese (1,640 mg/kg one sample only), nickel (84 mg/kg one sample only), zinc (230 mg/kg one sample only) and TPH fraction C₁₀-C₃₆ sum of total (1,050 mg/kg one sample only).
- ES&D noted that surface soil that built up during the use of the site as a lumber yard was scraped and stockpiled along the northern site boundary, adjacent to the Bass Highway.
- WC (2007a) and GBG (2022) noted that there are concrete slabs, footings and piles remaining across a significant amount of the site which made the investigation of these areas difficult.

The reported findings from previous site investigations indicate that levels of contamination within the soil on the converter station site are unlikely to present an unacceptable risk to human health or ecological receptors based on the proposed commercial/industrial site use. However, it is noted that the contamination status of soil underlying the remaining foundations of the former Tioxide factory have not been assessed. Previous investigations also suggest that, should shallow fill soils within the study area require excavation and offsite disposal, there are potential for contaminants (metals and hydrocarbons) to be at concentrations that exceed EPA Tasmania IB105 Level 1 (fill material) criteria but are below the Level 2 (low level contaminated soil) criteria.

6.5.2.2 Effluent Tunnel and Pipeline

The eastern portion of the converter station site formerly contained an effluent tunnel that ran from the factory area, beneath the Bass Highway, the railway line and the dune areas before emerging on Tioxide Beach. The tunnel is understood to have comprised a concrete structure approximately 200 m long, 1.2 m wide and 2.2 m high, and was covered with approximately 2 m of cover soils. Where the tunnel passed beneath the Bass Highway, it comprised a 600 mm diameter concrete pipe.

To the north of the Bass Highway, the tunnel comprised a similar box-like structure to the onsite tunnel and passed beneath the rail line and the dune systems. The northern-most 29 m of the tunnel had been more recently been replaced (i.e. recent in 2007) with a box-culvert type of structure (pitt&sherry, 2007).

The southern end of the tunnel was installed into competent rock. During tunnel inspections (*ibid*), water approximately 600 mm deep was present in the tunnel and was assumed to be from groundwater or surface water infiltration.

A 300 mm diameter stainless steel pipe was laid within the tunnel to transport effluent, and that at the northern end of the tunnel (where it emerged on the beach) the pipeline continued, buried beneath the sand of the beach and shore crossing for approximately 250 m. The pipeline extended approximately 3 km offshore and ended in a diffuser to distribute the effluent (*ibid*). Whilst all historic reports only note a single pipeline that is buried from the Beach entrance of the effluent tunnel to some distance offshore, later reports (CEE, 2022), notes that two pipelines extend offshore approximately 3 km.

It is inferred that the tunnel portion that is on the converter station was decommissioned in 2008. This is based on the preferred approach recommended to manage the integrity of the tunnel in the pitt&sherry (2007) tunnel inspection report. This report recommended removing the overburden, removing the concrete top to the tunnel, removing the existing pipe (if possible) or crushing the pipeline within the tunnel on the site, crushing the walls of the tunnel into the tunnel floor, placing the roof of the tunnel into the tunnel void, backfilling the remaining tunnel void with self-compacting crushed rock, and then reinstating the overburden (if uncontaminated). The report also recommended filling the 600 mm diameter culvert under Bass highway with concrete, and also filling the older section of the tunnel under the railway line and dunes (up to the newer box-culvert section) with concrete. The plan in the report did not indicate if the pipeline where it left the converter station site was to be removed or retained within the tunnel.

No reports or records regarding the completion of the tunnel works were available for review (from either the EPA or other sources) which documented the remediation and/or validation of the tunnel or pipeline. However, an aerial photograph from January 2008 appears to show that the tunnel had been uncovered, with two stockpiles of overburden either side of the tunnel alignment (Figure 11).

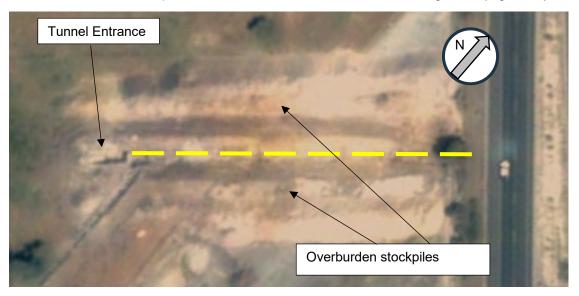


Figure 11: Aerial photograph from 2008 showing tunnel exposure (tunnel in yellow)

Subsequent aerial photographs in 2011 show a disturbed area where the tunnel was, and the former entrance shaft was no longer visible on the site.

As there are no reports available for review of the removal and/or testing of contamination around the tunnel, as a conservative measure it is assumed (based on the reviews of the reports provided and consistent with the absence of remediation or validation reports or approvals) that the tunnel was decommissioned and retained in-situ as crushed concrete and/or crushed rock backfill, and the condition of any residual sediments or scale within the tunnel or pipeline are unknown, but still present in the inferred tunnel alignment.

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

The offshore effluent pipelines were inferred to be buried at the shore crossing to a distance of approximately 250 m offshore (based on CEE, 2022), and they currently extend approximately 3 km offshore. The condition of the connection between the effluent tunnel beach entrance and the offshore portion of the pipelines is unknown.

The HVDC cable crossing study (Marine Solutions, 2024) identified that in the area where the proposed sub-sea cable will cross the pipelines that the pipelines:

- Were in good condition with no observable holes.
- Were constructed from lengths of pipe that were bolted together and anchored to the seabed via steel banding bolted to rock outcrops, or via concrete collars at regular intervals.
- No asbestos or asbestos fibres were present in samples collected from flange gaskets used to seal the pipe joins.
- The concentrations of potential contaminants from sediment inside and outside the pipeline
 were all below the sediment default guideline values (DGVs), or below the laboratory
 reporting limits (LOR). The sediment concentrations inside the pipeline were generally lower
 than those outside from the seabed, with the exception of titanium and manganese, which
 were marginally higher from sediments within the pipeline.

Consequently, based on the results of the Marine Solutions (2024) study, the pipeline, if disturbed during cable crossing works (in the area planned for the cable crossing), is unlikely to result in disturbance of contaminated sediment that may impact on the environment.

6.5.2.3 Acid Sulfate Soils

Limited investigation into the potential presence of ASS has previously been conducted at the study area. Relevant findings include:

- Swamp deposits and a hydrogen sulfide odour (potentially indicative of ASS) were identified by WCC (2007a) in 35 of 62 test pits completed at depths of up to 1.5 mbgl from across the converter station site, noting that no deeper samples were collected.
- ASS field testing was conducted by Jacobs (2022a) on soil samples from five locations on the
 converter station site. Results of the ASS field testing demonstrated strong evidence that ASS is
 present at the site with large pH reductions reported for each sample during field testing.
- Samples from five locations from the converter station site were submitted by Jacobs (2022a) for laboratory SPOCAS analysis to confirm the potential for ASS to be present in the study area. Two samples reported minor exceedances of the net acidity action criteria (0.03 %S / 15 mol.H⁺/tonne). However, Jacobs noted that the values that exceeded the criteria may have been overestimated due to the reporting method extracting organic sulfur, leading to potential interference to some of the analytical methods.
- The soil profile on the site comprised fill or disturbed natural soils to depths of between 1 and 2.5 min the ASS sampling locations, with potential ASS identified at two locations:
 - TP01-0.5m, with a net acidity of 0.096 %S in gravelly sand fill in the former factory area, and
 - BH04-2.0, with a net acidity of 0.035 %S in wet clayey gravels in the former factory area.
- ASS testing of 26 sediment sampling from the sea bed at 14 locations confirmed that there were no actual ASS within the sediments, and whilst the analysis indicated that there was a potential for acid to be generated if the sediments were oxidised, the acid-neutralising capacity exceeded the acid generation by several orders of magnitude, and the net acidity was below the adopted screening criteria and laboratory reporting limits (<0.02 %S / <10 mole H*/tonne). This indicated that the offshore sediments were unlikely to be acid generating and will not require specific management.</p>

The reported results of ASS sampling and analysis completed by Jacobs (2022a) indicate that ASS is potentially present within the study area. However, due to the potential interference of some analytical methods, the results presented by Jacobs (2022a) are not considered sufficient for the purposes of assessing the possible impacts that may arise during construction, operation or decommissioning works planned for the study area. Consequently, additional targeted ASS assessment was required, and the details of the additional assessment are provided in Section 6.6.

6.5.2.4 Soil stockpiles

No investigations into the contamination status of soil stockpiles at the study area have previously been conducted. Consequently, additional targeted assessment of soil stockpiles within the Heybridge Converter station site was warranted and the details of the additional assessment are provided in Section 6.6.

6.5.2.5 Naturally Occurring Radioactive Material (NORM)

NORM assessment has previously been completed at the site by SA Radiation (2020), pitt&sherry (2020) and Jacobs (2022a). In order to assess for NORM, radiation readings were recorded across the site and during test pit excavation and borehole advancement across the converter station site. The measured results ranged from 43 to 115 nSv/hr. The adopted screening level for NORM was two times the background radiation levels. Background locations comprised three sites: one at a sports oval in Burnie (approximately 4km to the west), one at the eastern end of Tioxide beach (approximately 400 m from the site), and one site upstream and to the east of the Blyth River. Background readings were in the range 41 and 73 nSv/hr, and were used to establish a background screening level of 146 nSv/hr.

The highest recording of 115 nSv/hr was measured within a test pit at a depth of 1.0 mbgl.

Based on the reported results of the assessment completed by previous consultants, it is considered unlikely that NORM is present within the study area at levels that will impact on the proposed development of the site.

6.5.2.6 Groundwater quality

The investigation of groundwater quality underlying the study area has been limited, with samples collected from test pits where groundwater has been encountered during previous soil assessments, and from the previous installation of 5 groundwater wells across the converter station site. A summary of the findings of the groundwater assessment include:

- Groundwater was encountered by Jacobs (2022a) at approximately 1 to 3 mbgl across the converter station site.
- A total of five groundwater samples were collected by Jacobs (2022a) and submitted for laboratory analysis.
- Analytes for the groundwater samples collected by Jacobs (2022a) were reported to be below
 adopted criteria with the exception of cobalt (all samples), copper (three samples) and zinc (all
 samples). PFAS concentrations were reported in three wells but were below the adopted
 screening criteria for marine ecosystems (95% species protection) and also for other water uses.
- Field parameters recorded by Jacobs (2022a) indicated that the groundwater was mildly acidic with an oxidising potential.
- WCC (2007a) reported that shallow groundwater encountered during test pit excavation was locally contaminated with TPH (>C₁₀) and traces of volatiles at two locations.

The groundwater results reported by Jacobs (2022a) and WCC (2007a) indicate that there are minor concentrations of metals in groundwater that exceed the adopted marine water screening criteria but

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

that there is unlikely to be groundwater contamination at the study area that impacts on the proposed development.

6.5.2.7 Surface water

No investigations into the contamination status of surface water within the converter station site, including runoff and water contained in the onsite stormwater pond, have previously been undertaken. Consequently, additional targeted surface water assessment was required, and the details of the additional assessment are provided in Section 6.6.

6.5.2.8 Sediment

Sampling of offshore sediment was completed in 2022 as part of the marine geotechnical and geophysical surveys. Sediment samples were compared against the Australian and New Zealand Guidelines for Fresh and Marine Water Quality (ANZ, 2018) for sediment guidelines. Two levels of screening criteria were applied (Tetra Tech Coffey, 2022) including:

- Default guideline values (DGVs), which indicate the concentrations below which there is a low risk of biological effects occurring.
- Upper guideline values (GV-high), which provide an indication of concentrations at which toxicity related effects will be expected.

The results of the metals analysis showed that some samples contained concentrations of metals that exceeded the Default Guideline Values for sediment quality, but the majority did not exceed the upper guideline values at which point benthic toxicity effects are likely to be observed.

Concentrations of arsenic exceed the DGV at most locations, with a median value of 24.5 mg/kg and a 95% upper confidence limit of 39.7 mg/kg across the entire dataset. This indicates that the arsenic may be naturally elevated in sediments in the area. Elevated concentrations of arsenic above the upper-guideline (GV-high) value were detected at SED-E5 at depths of 0.4-0.6m and 0.8-1.0m with concentrations of 103 and 108 mg/kg, respectively. The arsenic at depth at this location may represent a potential risk to benthic species if disturbed in this area and will require management in accordance with the requirements included in the Marine ecology and resource use report.

Concentrations of chromium were also elevated at locations SED-E5 and SED-W5 above the DGV for sediments. However, as the concentrations were below the adopted upper-guideline values, it is considered that localised effects on benthic biota may potentially be observed, but more investigation will be needed to confirm the relevance. The elevated concentrations of chromium were observed at the 0.4-0.6m depth, with shallower samples reporting lower concentrations.

Concentrations of nickel were observed in some locations above the DGV sediment criteria, with two locations (SED-E5 and SED-W5) reporting concentrations above the upper-guideline values. Given the location of these samples coincides with the elevated arsenic and chromium concentrations, the sediments in this area may potentially result in observable toxic effects on benthic biota if disturbed.

In general, the shallow sediment samples reported lower concentrations of metals, which likely represents fresh sediments that have been deposited over the last 20 years. Patterns in metals concentrations with depth were generally not observed in the sampling locations closer to the shore (i.e., sites E1, E2, E3, and W1), with no clear pattern in metals concentration changes with depth. This may partially be attributable to the shallow rock depth at some of these locations meaning that an aged sediment profile was not present to be sampled.

At the furthest location from shore (the E5/W5 sampling points) a marked change in metals concentrations with depth was observed, with concentrations of most metals (aluminium, arsenic, chromium, iron, nickel, vanadium and titanium) all increasing in concentration with depth.

This location, based on the increased metals (in particular iron and titanium) may represent an area where former effluent from the processing of titanium oxides has increased metals concentrations, but has more recently been covered by sediments more representative of natural sediments from the area.

It will typically be expected that metals concentrations in the <63 μ m fraction will be higher than in the whole <2,000 μ m due to the higher surface area for metal binding per unit weight. The appraisal of fine (<63 μ m) versus coarse (<2,000 μ m) sediment metals concentrations did not show significant differences between the fractions indicating no significant preference for metals adsorption to the sediments.

The Marine Ecology and Resource Use Impact Assessment (EnviroGulf, 2024) assessed the potential impacts to the environment that may arise from the disturbance of contaminated sediments in the nearshore area and concluded that the risks to marine ecosystems were low, and that application of management and mitigation measures (as documented in the EnviroGulf, 2024 report) would reduce the potential risks to very low. The potential impacts from the metals contamination in offshore sediments has not been considered further in this report.

6.6 TARGETED SOIL AND SURFACE WATER SAMPLING

Based on the results of the review of previous reports prepared for the study area, a data gap in terms of characterising surface water quality on the site, soil stockpile contamination status and the potential for ASS to be present at the site was identified.

Additional targeted sampling of site surface water, soil stockpiles, and soils for ASS testing was conducted on 8 March 2023 to assess the impact of potentially contaminating activities on stockpiled soil and surface water runoff at the study area, as well as the presence of ASS. The results of the sampling works are detailed in the following sections.

6.6.1 ASS sampling results

Sampling for ASS was undertaken at eight locations along the northern boundary of the Heybridge converter station site. The results of the sampling are summarised below.

6.6.1.1 Field observations

As part of the sampling works conducted, field observations were made to identify indicators of potential soil impacts or contamination such as vegetation distress, water-logged soils or disturbed earth. A summary of these observations is provided in Table 6-2.

Table 6-2: Field Observations - soil sampling

Test Pit Location	mBGL	Observations
HEY1 0.0- 0.4		Fill: Brown-grey sandy clay with gravels and debris (brick and wood pieces)
	0.4-0.9	Natural: Dark grey clayey sand with black and white mottling with gravels
	0.9-1.4	Natural: Dark grey clayey gravels with sand
	1.4-1.5+	Natural: Pale grey gravelly clay with coarse sand and quartz pebbles. A sulfur-like odour was noted at 1.4 mbgl.

Test Pit Location	mBGL	Observations
HEY2	0-0.2	Fill: Sandy clay fill with gravels
	0.2-0.4	Fill: Clay fill with rootlets and charcoal fragments
	0.4-1.5+	Natural: Dark brown clay.
HEY3	0-0.3	Fill: Dark brown sandy clay fill with gravels and brick fragments
	0.3-1.45	Natural: Grey sand
	1.45-1.5	Natural: Oxidised red-brown cemented sand
HEY4	0-0.8	Fill: Sandy clay fill with boulders and debris (bricks, wood and concrete)
	0.8-1.5+	Natural: Dark grey sand with shell fragments.
HEY5	0-0.5	Fill: Yellow sandy clay fill with gravels, with concrete pieces, wire and plastic fragments
	0.5-1.5+	Fill: Yellow sandy clay fill with gravels
HEY6	0-0.1	Fill: Shallow dark brown sandy clay
	0.1-1.5+	Natural: Sandy clay with mudstone and quartz gravels.
HEY7	0-0.9	FILL: Yellow-grey clayey sand with gravels and boulders.
	0.9-1.5+	FILL: Pale grey clay with boulders, gravels and wood fragments.
HEY8	0-0.16	Fill: Clayey sand
	0.16-0.9	Natural: Clayey sand with boulders, gravels and pebbles,
	0.9-1.3	Natural: Yellow sandy clay with orange mottling and boulders
	1.4	Refusal on boulders

Field notes recorded during sampling are presented in Appendix E.

6.6.1.2 Analytical results

A total of 21 soil samples were analysed using the ASS field test methodology (by the NATA accredited laboratory). The ASS field testing is a quick method for appraising the potential for soils to be ASS containing and is used to guide furthermore specific ASS testing at the laboratory. The Method involved mixing two 5-gram sub-samples of soil in de-ionised water (pH-F) and 30% hydrogen peroxide (pH-Fox) and recording the reaction rates and the pH of each sample. The reaction rates range between no reaction (1) to vigorous reaction with heat or gas generation (4).

In order to evaluate the potential ASS impacts, the analytical results have been compared against the below screening criteria (based on Vic EPA Publication 655.1- Acid Sulfate Soil and Rock).

Table 6-3: Summary of ASS field test screening criteria

Hazard	pHF	pHFOX	Change in pH
None	>5	>5	< 2
Low	>5	>5	>2
Moderate		3 – 5	>2
High		<3	>2

Notes:

 $pH_{\text{\tiny F}}$ – indicates the existing pH of the soil in the field.

pHFox-measure of soil pH after rapid oxidation with hydrogen peroxide

Screening criteria for reaction rates have not been included in the above table as reaction rates can be affected by other compounds or materials within the sample (such as levels of organic carbon).

The results of the field pH test (conducted before and after oxidation using pHF and pHFOX respectively) and reaction rates (as compared with the screening criteria in Table 6-3 above) is presented in Table 6-5 below (and in Appendix C). Where field test results indicated an elevated risk of ASS (potential or actual) to be present, additional analysis of the samples via CrS testing was undertaken. The results of the CrS testing have also been included in the table below with 18 mol.H⁺/t being the adopted screening criteria.

Table 6-4: Results of acid sulfate soil testing

Soil Sample ID	pH₅	pH _{FOX}	Change in pH	Reaction Rate	Actual Acidity (mol H+/t)	Net Acidity (mol H+/t)
HEY1_0.0-0.2	5.8	3.1	2.7	3.0	-	-
HEY1_0.4-0.7	6.4	4.2	2.2	4.0	-	-
HEY1_0.9-1.0	-	_	-	-	7.2	11
HEY1_1.4-1.5	-	_	-	-	7.8	15
HEY2_0.0-0.2	5.6	4.1	1.5	4.0	-	-
HEY2_0.6-0.7	5.6	3.1	2.5	4.0	-	-
HEY2_1.4-1.5	-	_		-	41	46
HEY3_0.0-0.2	7.5	4.8	2.7	4.0	-	-
HEY3_0.9-1.0	-	-	-	-	4.8	<10
HEY3_1.4-1.5	-	-	-	-	3.2	<10
HEY4_0.0-0.2	8.3	5.3	3	4.0	-	-
HEY4_0.4-0.5 (A)	7.9	4.8	3.1	4.0	-	-
HEY4_0.9-1.0	-	-	-	-	<2	<10
HEY4_1.4-1.5	-	_	-	-	<2	<10
HEY5_0.0-0.2	9.1	6.9	2.2	4.0	-	-
HEY5_0.4-0.5	8.0	5.8	2.2	3.0	-	-
HEY5_0.9-1.0	7.2	5.2	2	3.0	-	-
HEY5_1.4-1.5	6.3	4.9	1.4	3.0	-	-
HEY6_0.0-0.3	6.5	4.0	2.5	3.0	-	-
HEY6_0.4-0.5	5.5	2.5	3	3.0	22	27
HEY6_0.9-1.0	5.5	3.1	2.4	3.0	-	-
HEY6_1.4-1.5	-	-	-	-	11	11
HEY7_0.0-0.2	6.1	2.8	3.3	3.0	-	-
HEY7_0.5-0.6	6.1	3.0	3.1	3.0	-	-
HEY7_0.9-1.0	4.4	3.0	1.4	3.0	48	85
HEY7_1.4-1.5	-	-	-	-	42	67
HEY8_0.0-0.3	6.1	2.8	3.3	4.0	-	-
HEY8_0.4-0.5	5.1	2.9	2.2	3.0	2.7	<10
HEY8_0.6-0.7	5.3	2.9	2.4	3.0	-	-
HEY8_0.9-1.0	4.8	2.9	1.9	3.0	6.0	13
HEY8_1.3-1.4	-	-	-	-	24	30

The measured pH_F (or acidity) and pH_{FOX} of both the fill and natural soil samples collected from the site do not suggest the presence of actual ASS. However, the change in pH and the reaction rate suggest that potential ASS may be present in both the fill and natural soils.

Based on field observations and initial ASS field test results, fourteen selected samples were submitted for laboratory analysis using the chromium reducible sulfur (CrS) suite analytical method to assess acid production potential and net acidity for comparison to the texture-based action criteria in the Tasmanian Acid Sulfate Soil Management Guidelines (DPIPWE 2009). Relevant criteria are also dependent on the volume of material to be disturbed and are grouped as disturbances between 100 to 1000 tonnes, and greater than 1000 tonnes. Given that the scale of the soil disturbance is not yet known, we have adopted the more conservative screening criteria (disturbances greater than 1000t) to appraise potential risks. The net acidity result was determined according to acid base accounting for both the sulfur and acid trails which takes into account existing acidity, potential acidity and the acid neutralising capacity of the soil (as appropriate).

The reported analytical results for the ASS samples collected as part of this assessment are displayed in Table 1, Appendix C, and are summarised below in Table 6-5. Laboratory documentation is presented in Appendix F.

Table 6-5: Summary of ASS analysis – samples exceeding action criteria

		Net Acidity		
Location / Depth (m)	Soil type	Acid Trail (moles H ⁺ / tonne)	Sulfur Trail (% S w/w)	
HEY2_1.4-1.5	Clay	46	0.07	
HEY6_0.4-0.5	FILL: Sandy Clay	27	0.04	
HEY7_0.9-1.0	FILL: Clay	85	0.14	
HEY7_1.4-1.5	FILL: Clay	67	0.11	
HEY8_1.3-1.4	Sandy Clay	30	0.05	

The reported analytical results confirm that potential ASS are present at the northwest and southeast ends of the site in the vicinity of the planned HVDC subsea cable end points, as depicted in Figure 4. At location HEY2 in the northwest part of the site potential ASS was encountered at a depth of 1.4 mbgs while at the southeast end of the site it was encountered at depths ranging from 0.4 mbgs at location HEY6 to the maximum excavation depth of 1.5 mbgs at location HEY7.

The extent of ASS is not consistent across the site, and some units have neutralising capacity to mitigate potential acid generation. However, the analysis for ASS in the Jacobs (2022a) and this report identified that the grey to black clays, with or without gravels, were associated with potential ASS, and were likely to be encountered at a depth of 1 to 1.5 m below the ground surface, although up to 0.5 m deeper on the southern side of the converter station site due to higher elevations in this area. The centre of the former factory area may also contain acidic conditions in soils from either ASS or former acid leaks from the factory processes.

6.6.2 Stockpile sampling results

Sampling of the stockpiles on the Heybridge converter station site was undertaken and the results of the sampling are summarised below.

6.6.2.1 Field observations

As part of the sampling works conducted, field observations were made to identify indicators of potential soil impacts or contamination such as odours, staining or the presence of extraneous material. A summary of these observations is provided in Table 6-6.

Table 6-6: Field Observations - stockpile sampling

Stockpile Location	Samples Collected	Observations
SP2	3 (SP2_01-03)	Sandy clay with gravels and some extraneous material (plastic, clay pipe, concrete pieces, glass fragments). Organic odour noted.
SP3	1 (SP3_01)	Dark brown sandy clay with brick fragments. Eastern part of stockpile not sampled as it was considered to be within a designated asbestos area.
SP5	3 (SP5_01-03)	Sandy clay with gravels and wood fragments.
SP8	2 (SP8_01-02)	Sandy clay with gravels. No extraneous material observed.
SP9	4 (SP9_01-04)	Sandy clay with gravels. Organic odour and white staining noted at sample location SP9_01. Eastern part of stockpile (includes sample locations SP9_01 and SP9_02) was observed to be dark brown and contained a significant amount of wood chips – suspected to be more recently placed than western part of stockpile.
SP10	3 (SP10_01-03)	Sandy clay with wood, brick and concrete fragments.

It is noted that other stockpiles were present onsite (as shown in Figure 5) however, due to their small size and volume, sampling of these stockpiles was not completed. Field notes recorded during sampling are presented in Appendix E.

6.6.3 Surface water sampling results

Sampling of surface water at the Heybridge converter station site and foreshore was undertaken. The results of the sampling are summarised below.

6.6.3.1 Field observations

Surface water was observed onsite in man-made drainage channels adjacent to tracks running southeast to north-west, with culverts feeding the water under the tracks and ultimately under the Bass Highway to the drainage outlet (HEY-SW2-Alt) at Tioxide beach. Little to no vegetation was present along the tracks, while low scrubby vegetation was observed around the drains.

The surface water displayed no visual or olfactory evidence of chemical contamination at the time of sampling.

The observations noted at each surface water sample location are summarised below in Table 6-7.

Table 6-7: Field Observations – surface water sampling

Sample Location	Location Type	Observations	
HEY-SW1	Stormwater drain outlet to Tioxide Beach	No apparent odour. Clear with green algae.	
HEY-SW2-Alt	Onsite drainage channel alongside site tracks	Slightly cloudy – brown. No odour.	

Field notes recorded during sampling are presented in Appendix E.

6.6.3.2 Analytical results

The reported analytical results for the surface water samples collected as part of this assessment are displayed in Table 4, Appendix C. Laboratory documentation is presented in Appendix F.

The copper concentrations reported for both surface water samples collected as part of the assessment (HEY_SW1 and HEY_SW2) exceed the adopted marine and freshwater assessment criteria. The reported concentrations of zinc in both samples are above the adopted freshwater assessment criteria. The adopted marine assessment criteria is also exceeded by the zinc concentration reported for sample HEY_SW2.

Concentrations of arsenic (sample HEY_SW2), nickel (both samples) and some petroleum hydrocarbons (sample HEY_SW1) were also reported above the laboratory limit of reporting (LOR), but below the adopted screening criteria. All other analytes were reported at concentrations below the laboratory LOR.

The surface water criteria exceedances are summarised below in Table 6-8.

Table 6-8: Surface Water criteria exceedances

Analyte	Reported Concentration Range (mg/L)	ANZECC 2000 Recreational water quality and aesthetics	ANZG (2018) Freshwater 95% toxicant DGVs	ANZG (2018) Marine water 95% toxicant DGVs	Locations Exceeding Criteria
Copper	0.003	1	0.0014	0.0013	HEY_SW1 & HEY_SW2
Zinc	0.012 – 0.067	5	0.008	0.015	HEY_SW1 & HEY_SW2

Shading denotes analytical results that exceeded the adopted site criteria.

6.6.4 Data quality assessment

Tetra Tech Coffey has completed a review of the Quality Assurance (QA) steps and Quality Control (QC) results, according to the following documents.

- NEPC, National Environment Protection (Assessment of Site Contamination) Measure, National Environment Protection Council (1999).
- US EPA Guidance on Environmental Data Verification and Data Validation (2002).
- US EPA Contract Laboratory Program for Organic (1999) and Inorganic (2002) Data Review.

This included examining holding times, laboratory accreditation, sample preservation methods, a review of field QC sample results and a review of laboratory QC sample results. To validate the accuracy and validity of primary soil sampling results, a range of field and laboratory QC samples were collected and assessed during the assessment.

A summary of the reported QC analytical results and data validation report is provided in Appendix G.

NATA certified laboratory certificates of analysis are provided in Appendix F.

Overall, it was considered that the field and laboratory quality procedures and results are acceptable for the purposes of interpreting and verifying the findings of the assessment.

6.6.5 Stockpile classification

A comparison of the reported analytical results for the stockpile samples collected as part of this assessment against the waste classification criteria listed in EPA Tasmania Information Bulletin No. 105 is displayed in Table 2, Appendix C. Laboratory documentation is presented in Appendix F.

Several stockpile samples reported concentrations of some metals exceeding 'fill material (level 1)' criteria. The elevated analyte concentrations reported for each stockpile sampled as part of the assessment and the subsequent preliminary classification are summarised below in Table 6-9.

The concentrations reported for all other analytes were below detectable limits, with the exception of some hydrocarbon fractions which were reported above the laboratory limit of reporting (LOR) in several samples.

Table 6-9: Preliminary stockpile classification

Stockpile	Analyte Exceeding Fill Material Criteria	Samples	Maximum Concentration (mg/kg)	Preliminary Classification	
Ota alueila O	Chromium (III+VI)	SP2_01 - 03	280	Low Level Contaminated Soil (Level 2)	
	Copper	SP2_02	170		
Stockpile 2	Mercury	SP2_02	6.7		
	Nickel	SP2_01 - 03	110		
Stockpile 3	Chromium (III+VI)	SP3_01	87	Low Level Contaminated Soil	
	Mercury	SP3_01	9.8	(Level 2)	
Stockpile 5	Lead	SP5_02	380	Low Level Contaminated Soil (Level 2)	
Stockpile 8	Chromium (III+VI)	SP8_02	63	Low Level	
	Nickel	SP8_02	94	Contaminated Soil (Level 2)	
Stockpile 9	Chromium (III+VI)	SP9_01 & SP9_02	67	Low Level Contaminated Soil (Level 2)	
Stockpile 10	Chromium (III+VI)	SP10_01 & SP10_03	84	Low Level	
	Nickel	SP10_03	73	Contaminated Soil (Level 2)	
	Zinc	SP10_03	400	(237312)	

On-site retention

The reported stockpile sample results have been compared against the adopted human health and ecological assessment criteria to indicate if the stockpiled material is appropriate to be retained onsite for reuse. The reported analytical results are compared against the adopted criteria in Table 3, Appendix C.

Concentrations of copper (sample SP2_02), nickel (SP2_01-03, SP8_02, SP10_03) and zinc (SP10_03) were reported above the adopted Ecological Investigation Levels (EILs). It is noted that the EILs for copper, nickel and zinc were calculated using conservative criteria in the absence of site-specific data.

All other analytes were reported to be below the adopted assessment criteria. It is noted that some TPH/TRH fractions were reported to be above the laboratory LOR in several stockpile samples.

The stockpile human health and ecological criteria exceedances are summarised below in Table 6-10.

Table 6-10: Stockpile human health and ecological criteria exceedances

Analyte	Reported Concentration Range (mg/kg)	NEPM (2013) Table 1B(5) EILs - Comm/Ind	Locations Exceeding Criteria	Stockpiles Impacted
Copper	<5 - 170	90	SP2_02	Stockpile 2
Nickel	<5 - 110	65	SP2_01-03, SP8_02, SP10_03	Stockpiles 2, 8 and 10
Zinc	8.6 - 400	190	SP10_03	Stockpile 10

The reported stockpile results indicate that, should the stockpiled material be retained and reused onsite, it is unlikely to present an unacceptable health risk to maintenance and construction workers who are exposed to the soil. The reuse of the soils withing stockpiles 2, 8 and 10 may result in impacts to sensitive ecological receptors and any retention of these stockpiles will require additional investigation to determine likely effects to receptors in their final re-use location.

CONCEPTUAL SITE MODEL

This section provides a summary of the conceptual site model (including the nature and extent of contamination within the study area) and appraises the potential risks to receptors from contamination.

Based on the review of previous environmental site investigations and publicly available relevant environmental and historical information, and targeted sampling undertaken as a part of this assessment, potential sources of contamination and their associated contaminants of concern which may have impacted the soil, sediments, surface water and groundwater within the study area have been summarised in Table 7-1.

Table 7-1: Summary of potential sources of contamination

Sources of Contamination	Associated Contaminants of Potential Concern
Former Tioxide factory	Metals, petroleum hydrocarbons, asbestos, low pH, NORM
Lumber yard	Petroleum hydrocarbons
Potential ASS	Acid generation (low pH), metals

7.1 NATURE AND EXTENT OF CONTAMINATION (SOURCES)

The primary sources of contamination (as summarised in Table 7-1) are no longer present on the converter station site (with the exception of potential ASS), however, secondary sources of contamination remain on the converter station site, and within the study area.

7.1.1 Soil impacts

Soil contamination associated with the former Tioxide factory have largely been remediated to levels commensurate with the industrial land use. However, isolated locations of contamination still remain within the converter station site including metals in fill soils across the site, with concentrations of copper, nickel, lead and zinc above the adopted NEPM EILs calculated for the site, as well as one location with lead above the adopted NEPM HIL-D.

There is also the potential that hydrocarbon contamination may be present in soils at the converter station site above NEPM management limits or health screening levels based on the historic impacts identified in soils. Recent testing has not identified any locations on the converter station site with concentrations of hydrocarbons above the adopted screening criteria.

Asbestos containing materials are also present within fill soils and soil stockpiles on the converter station site with several areas reporting ACM presence that will potentially present an unacceptable hazard to human health via the inhalation of fibres. A plan showing the areas where asbestos containing materials have previously been identified and removed is presented as Figure 12. The asbestos materials (where identified) were visually removed, however no validation sampling of the residual soils (in accordance with the NEPM) has been undertaken and there is a potential that fragments of asbestos containing materials remain within fill soils on the site.

Low pH soils (less than 4 pH units) are also present beneath some areas of the converter station site, where acid leakages from the plant have resulted in reduced pH. The low pH soils are generally contained to the central section of the converter station site.

The converter station site is underlain by a varying thickness of fill soils, ranging from approximately 0.3 to greater than 2 m in some locations. The average fill thickness across the converter station site was approximately 0.7 m, based on test-pitting undertaken since the demolition and rehabilitation of

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

the factory. The extent of fill has also not been well characterised in the former factory areas where buried concrete blocks and bricks / rubble have limited the ability to extend boreholes to depth.

Given the highly heterogeneous nature of the fill soils on the converter station site, there is a potential that areas of contamination are present in soils at depth, including hydrocarbon contamination, metal contamination, acidic soils and asbestos containing materials at concentrations that could pose a potential impact to the health of site users or environmental receptors both on the converter station site, and in within the greater study area where contamination may be mobilised (such as via airborne or surface water transport) if disturbed.

The condition of the former effluent tunnel is also unknown, and contaminated soils may be present in and around this structure. The condition of the materials around the tunnel (whether still present or decommissioned) is unknown. However, based on the proposed decommissioning plan (pitt&sherry 2007), it is possible that the former tunnel could act as a preferential pathway for contaminant migration from the site to Bass Straight, or saline intrusion onto the site during any dewatering activities.

Soil stockpiles are also present on various areas of the converter station site and whilst the soils in the stockpiles are unlikely to present an unacceptable risk to human health or environmental receptors, should they require offsite disposal they may be classified as low-level contaminated soils (Level 2) in accordance with Tasmanian EPA Bulletin 105.

Radioactivity testing undertaken across the converter station site and within test pits indicated that the measured radioactivity was within background levels for the area.

PFAS testing for soils did not report any concentrations above the adopted screening criteria or laboratory limits of reporting.

Areas of soils at the site potentially contain hydrocarbon odours. The majority of hydrocarbon impacts were removed during the factory decommissioning and remediation works undertaken and validated as being below the adopted industrial land-use screening criteria. However, some residual hydrocarbons may remain in soils (either around former remediation areas or in unidentified areas on the converter station site) that may be odorous and present an aesthetic impact to receptors if disturbed.

The conservative assumption that all fill soils will require removing from the site as a part of the project will remove the majority of any potential contamination remaining within the fill soils at the site. Review of the previous data (WWC, 2007a) noted that soil sampling was undertaken on an approximate 30 m grid across the entire former factory site at 62 locations and identified elevated concentrations of arsenic, cobalt, chromium, mercury, manganese, nickel, lead and zinc above the Level 1 (fill material) screening criteria. The locations of the Level 1 (fill material) exceedances were across the centre and south of the converter station site (where fill has been assumed to require removal) and within the top 0.5 m of soils. One location in the centre of the former factory area also contained a concentration of manganese (6,469 mg/kg) that exceeded the Level 2 (low level contaminated soils) criteria.

A statistical appraisal of the soil manganese results indicated the following:

- The shallow fill soils reported a 95% UCL of 1,911 mg/kg, and
- The entire soil data set reported a 95% UCL of 611 mg/kg.

The statistical evaluation would classify the soils (from a manganese perspective) as Level 2 (low level contaminated soils)

The distribution of impacts throughout the soil profile indicates that whilst the top 0.5 m of soils contains the majority of Level 2 (low level contaminated soil) with deeper soils generally comprising Level 1, isolated locations – particularly in the factory areas - contain deeper contamination (up to 1 m

below ground levels) that would classify these isolated locations as Level 2 (low level contaminated soil).

On the basis that the upper 0.5 m of soils on the converter station site are predominantly Level 2 (low level contaminated soils), with some deeper areas, the following estimate of the approximate volumes of waste soils in the fill soils to be disturbed has been provided. The estimates in the table are based on the assumption of the top 0.5 m of fill soils are Level 2 (low level contaminated soil), and a further 25% of deeper fills soils are also Level 2 (low level contaminated soil). The table also assumes that the remaining deeper fill soils would be classified as Level 1 (fill material) for the purposes of off-site disposal.

Table 7-2: Estimates of waste soil categories for disposal

Soil category	Estimated volume (m³)	
Level 1 (fill material)	37,200	
Level 2 (low level contaminated soil)	34,300	
Level 3 (contaminated soil)	0	
Level 4 (contaminated soil for remediation)	0	
Totals	62,200	

7.1.2 Surface water impacts

Surface water testing from the drain and pond on the converter station site indicated that the surface water contained concentrations of copper and zinc above the adopted screening criteria for protection of fresh and marine water (ANZG 2018 – DGVs for 95% species protection). Given that the converter station site drains and ponds are man-made structures, a lower level of protection of freshwater species could be adopted – as these will be classified as highly-disturbed systems (or may not even qualify as surface water requiring protection given that it is in a pipeline and storage detention basin). However, as the surface water from the converter station site discharges directly to the marine environment, the 95% marine criteria have been adopted for appraising potential impacts to water quality.

The concentrations of copper and zinc are marginally above the adopted screening criteria and could present a potential risk to marine receptors. However, as the surface water flowing from the converter station site is ephemeral (in that it only flows during rainfall events), the impacts to marine receptors are likely to be minimal, as the exposure duration for assessing impacts to aquatic biota is based on continual exposure, and not periodic exposure. Consequently, the surface water quality within the study area is not considered to impact on ecological receptors within the marine environment.

The concentrations of potential contaminants at the converter station site were all below the screening criteria for protection of human health (primary contact recreation and potable water supply).

7.1.3 Groundwater impacts

Groundwater at the converter station site is present at depths ranging between approximately 0.5 m to 3 m below the ground surface (based on recent studies). Groundwater contaminant testing has shown that groundwater is generally not impacted by contamination originating from the converter station site.

The groundwater is mildly acidic (pH approximately 6.5), and contains concentrations of cobalt, copper and zinc in excess of the adopted marine water ecosystem protection criteria. The metals concentrations in groundwater are widespread across the converter station site, do not appear to be associated with any particular point source, and maybe reflective of background water quality in the area. No background water testing has been undertaken to confirm if the concentration of metals are naturally occurring, however given the widespread nature of the impacts, and that zinc and cobalt are not associated with any anthropogenic activities on the converter station site, it is likely that the concentrations are naturally occurring.

Localised areas of hydrocarbon impacts in groundwater were reported during test pit sampling (WCC 2007a). However, the concentrations are likely to be limited to the areas where they were previously identified and not widespread across the converter station site.

The groundwater from the converter station site discharges to the ocean at Tioxide beach and there is a potential that the concentrations of metals in groundwater may impact on marine receptors.

Testing of groundwater for PFAS identified concentrations of PFOS, PFOA and PFHxS above the laboratory reporting limits, although all concentrations were below the adopted screening criteria for protection of human health and marine aquatic ecosystems.

7.1.4 Sediment and offshore impacts

Offshore sediment sampling indicated that whilst metals in sediments were present, they were generally below the adopted default guideline value (DGV) levels and likely to be naturally occurring across the majority of the sampling areas. However, concentrations of arsenic, nickel and chromium were elevated at the furthest sampling points from the shore (SED-W5 and SED-E5), with concentrations above the DGV (As, Cr, Ni and Ag), and also above the Upper guideline value (As and Ni). The increased concentrations of metals in sediments at these locations is potentially a result of metal rich effluent discharged to this area from the Tioxide factory (via the effluent pipeline). These locations also show higher concentrations of iron, aluminium and titanium compared to locations closer to the shore, which also suggests that the metals may be from the former factory.

The effluent pipeline (in the area where the cable is proposed to cross the pipeline) is not considered to be a potential source of contamination, with sediments in and around the pipeline containing concentrations of potential contaminants below the sediment DGVs.

For the majority of the pipeline length, the sediments surrounding the pipeline are not considered to be contaminated. However, based on sediment sampling near the outlet of the effluent pipe, it is likely that sediments in the vicinity of the pipe outlets are contaminated with metals.

7.1.5 Potential ASS

ASS testing undertaken at the converter station site has shown that potential ASS are present at the converter station site at depths from approximately 0.5 m below the ground surface, but that it is not continuous across the converter station site. The lack of continuity across the converter station site is likely due to historic disturbance of the soil profile during factory construction and demolition.

The conservative assumption that all fill soils will require removing from the site as a part of the project will result in disturbance of large volumes of potential ASS. The extent of ASS or PASS at the site is not well characterised as the distribution is not contiguous across the site. The ASS sampling undertaken across the centre and south of the converter station site identified potential ASS presence in grey to black clays (with or without gravels) at depths of 1 to 1.5 m below the ground surface (up to 2 m on the southern side of the converter station site). The centre of the former factory area may also contain acidic conditions in soils from either ASS or former acid leaks from the factory processes. These soils and the associated potential ASS are likely to be disturbed where fill soils are removed (as assumed in Section 5.6). The potential oxidation and generation of acid from these soils will require management and/or treatment to mitigation potential impacts to the environment.

On the basis that a thickness of 0.5 m of soils (generally at depths of between 1 and 1.5 m below the ground) on the converter station site are potential ASS, the following estimate of the approximate volumes of potential ASS that may be disturbed has been provided. It is noted that the extent of ASS across the site is not contiguous, but that thicknesses may be greater than 0.5 m in some areas. Consequently, we have conservatively adopted a thickness of potential ASS of 0.5 m extends across the entire disturbance area for the purposes of assessing potential impacts.

On this basis, approximately $37,200 \text{ m}^3$ of ASS may be disturbed. The actual acidity of the potential ASS ranged from < 2 to 48 mol H⁺/tonne, and reported liming rates ranged between < 1 to 5.6 kg per tonne.

Whilst sampling for ASS between the converter station site and the shoreline has not been undertaken, it has been assumed that a layer of potential ASS is present in this area. Depending on the depth that the HDD conduits are drilled, potential ASS may be intercepted in this area. However, it is likely that if the conduits are drilled deeper (i.e., within the basement rock), potential ASS is less likely to be intercepted. Off-shore ASS testing indicated that the sediments were not potential ASS as they had sufficient acid-neutralising capacity to limit the generation of acid.

The extent of potential ASS likely extends across the converter station site, across the beach to the low tide line. The transition between potential ASS soils and offshore non-ASS sediments is not well defined. However, rock platforms with limited sediments extend to at least 200 m offshore and it has been assumed that the rock platforms do not contain any potential ASS. Consequently, we have assumed that the potential ASS soils extend to the low-tide line at Tioxide Beach.

The disturbance of ASS may also result in generation of localised sulfidic odours.

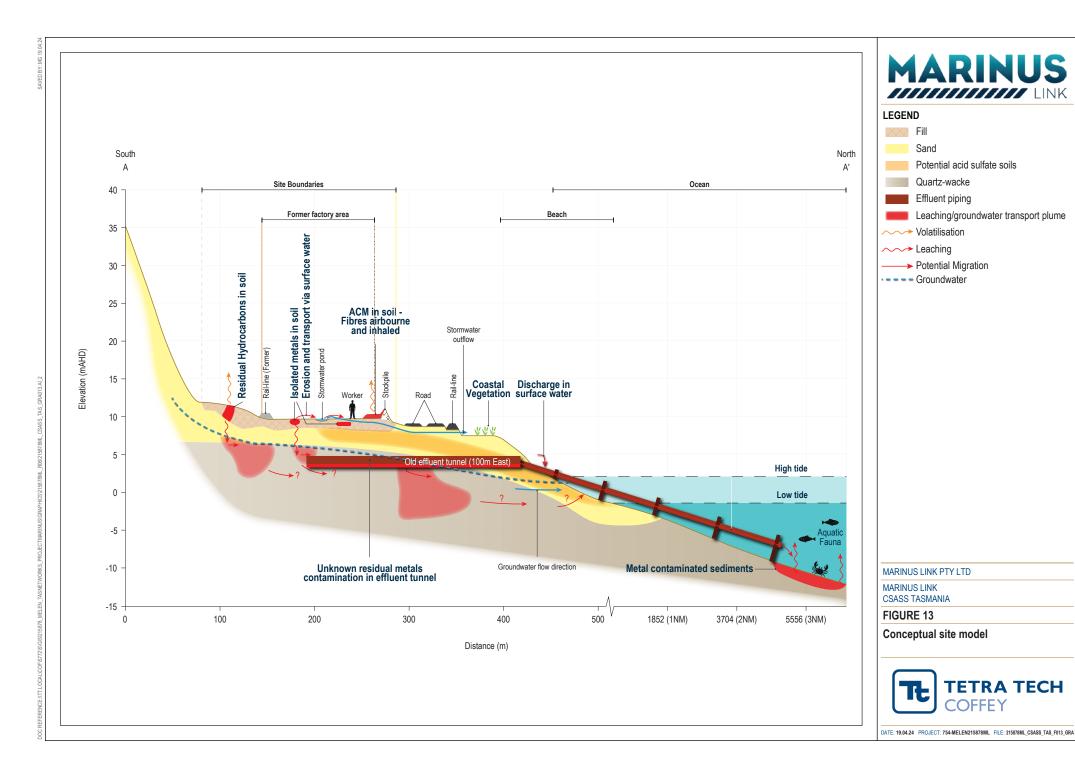
7.2 POTENTIAL EXPOSURE PATHWAYS

The main exposure pathways that could be considered likely during the construction, operation and decommissioning phases include:

- Human Health Exposure Pathways
 - Dermal contact with contaminated soil/sediments
 - Incidental ingestion of soil/sediments
 - Inhalation of soil derived dusts (including asbestos fibres)
 - o Volatilisation of contaminants leading to inhalation
 - Incidental ingestion or dermal contact with contaminated surface water (including marine surface water) or groundwater
- Ecological Exposure Pathways
 - Ingestion of soil by, or direct toxicity to, soil invertebrates
 - Uptake and accumulation by, or direct toxicity to terrestrial plants
 - o Incidental ingestion of soil by fauna foraging
 - Ingestion of sediment by, or direct toxicity to benthic biota
 - Uptake and accumulation by, or direct toxicity to contaminated sediment by benthic biota
 - Migration of contamination via surface run-off resulting in direct contact with contaminated water and/or sediment by aquatic organisms in receiving surface waters
 - Leaching of contamination in soil to groundwater resulting in impacts to groundwater dependent ecosystems

7.2.1 Potential receptors

The following key current site-specific receptors have been identified in vicinity of the study area:


- Human Health Receptors
 - Persons using the facility currently or in the future that may come into contact with contaminated soil and/or groundwater or be exposed to airborne contamination, or vapours that emit into indoor or outdoor areas; and
 - Construction and maintenance workers conducting works at the site in the event they come
 into contact with contaminated soil and/or groundwater or are exposed to airborne
 contamination, or vapours that emit into indoor or outdoor areas.
 - Construction or maintenance workers that may come into contact with contaminated sediments when working offshore
 - o Recreational users of impacted surface waterbodies.
- Ecological Receptors
 - Terrestrial fauna that may come into contact with onsite surface water bodies
 - Terrestrial flora that may update contaminated groundwater or surface water

- o Terrestrial flora and fauna that may come into contact with contaminated or low pH soils
- Marine biota that is exposed to contaminated groundwater or surface that has discharged from the site
- Marine biota that is exposed to contaminated sediments on the seabed that are disturbed by construction, maintenance or decommissioning.

7.2.2 Summary of conceptual site model

Based on the review of previous environmental site investigations and publicly available relevant environmental and historical information, potential sources of contamination within the study area that may impact on receptors were identified. A plan of the site conceptual model is presented as Figure 13. The key contamination issues within the study area include:

- Fill soils on the Heybridge converter station site with heterogeneously distributed contamination
 including metals (lead, copper, nickel, chromium and zinc), petroleum hydrocarbons and ACM
 that potentially cause an impact to human health or ecological receptors. Where these soils are
 disturbed or surplus to requirements, they have the potential to impact on receptors. If the soils
 are removed from the site, they have the potential to cause environmental or health impacts if not
 managed appropriately.
- Based on the long history of mineral processing, the demolition undertaken at the site and the
 highly heterogeneous distribution of contamination in soils at the Heybridge converter station site,
 contamination may be encountered outside of areas previously identified or remediated (i.e.
 former effluent tunnel).
- Contaminated groundwater discharging to surface water (onsite and the offsite marine environment) that may result in impacts to sensitive ecological receptors.
- Potential ASS within soils at the converter station site and between the converter station and the low-tide line that if disturbed or dewatered may result in generation of acid that impacts on human health, built structures, terrestrial or aquatic biota, or cultural heritage artefacts.
- Contaminated sediments approximately 5km offshore that may impact on benthic biota if disturbed (addressed in the Marine Ecology and Resource Use Impact Assessment (EnviroGulf, 2024)).

ARRING LINK HAS MADE EVERY EFORT TO ENGINE THIS PRODUCT IS FREE OF ERRORS BUT MAKES NO WARRANTY OR REPRESENTATION THAT THE MAP OR ITS FEATURES ARE EITHER SPATALLY OR TEMPORALLY ACCURATE AND THE INFORMATION CONTAINED IS ACCURATE AND THE INFORMATION OF MAY WARRANTY OF ANY KNID WHATSGEVER, EITHER EXPRESS OR IMPEDIA AND CEPTS NO LIABLITY TO ANY USER FOR RELIANGE ON THIS MAP OR INFORMATION. © MARRING LIM, 2016-2124.

8. RISK ASSESSMENT

The following sections present the contaminated land and ASS risk assessment for the construction, operation and decommissioning of the project.

Based on the outcomes of the conceptual site model and contamination assessment (Section 7), five potential hazards have been identified as having a risk of causing impacts to the environment without the application of additional controls:

- 1. Management of excavated soils,
- 2. ASS,
- 3. ACM debris, and

4.

5. Management of routine construction and operational impacts.

These four hazards and the associated risks are detailed below. The contaminated sediments in the offshore area have been considered in the Marine Ecology and Resource Use Impact Assessment (EnviroGulf, 2024) report.

Each potential impact is discussed with an assessment of risk likelihood and consequence provided. A summary table of risk to human health and ecological receptors have been provided (Table 8-4).

8.1 MANAGEMENT OF EXCAVATED AND SURPLUS SOIL

The assessment of the study area has identified that, shallow fill soils within the converter station portion of the study area that require excavation and/or offsite disposal, there are potential for contaminants (metals and hydrocarbons) to be at concentrations that may cause impact to human health or the environment if not managed appropriately.

These potential impacts are associated with disturbance of contamination that leads to either impacts to human health of site construction and maintenance workers via inhalation, dermal contact or incidental ingestion of contaminated soils. The likelihood of adverse effects to human health from disturbance of contaminated soils at the site is low as there are only limited and isolated occurrences of contaminants that exceed the adopted health screening criteria (NEPM HIL-D), and the known impacts are generally outside of the planned areas of disturbance. Generally, disturbance of soils at the converter station site is unlikely to result in impacts to human health and the soils are not considered to be contaminated (such that they require remediation or offsite disposal) – noting the presence of asbestos that requires specific remediation and management.

Residual soil stockpiles on the converter station site are unlikely to result in an adverse impact to human health as the potential contaminants within the stockpiles are below the adopted health screening criteria. Some of the fill and stockpiles soils at the converter station may also contain asbestos containing materials that could impact on human health. The risks from asbestos are considered separately in Section 8.3.

Metals contamination (primarily arsenic, copper, nickel and zinc) in soils and soil stockpiles on the converter station site may potentially impact on ecological receptors on the converter station site, however the extent of contaminated soil that exceeds the adopted NEPM EILs is limited, and it is likely that the majority of the areas of the converter station site will be maintained as a hardstand, which is unlikely to support ecological receptors. Removing fill soils from the site that are contaminated with metals that exceed the NEPM EILs, or retention of contaminated soils beneath areas of hardstand or pavement could reduce the potential impacts to ecological receptors. Additional testing of natural surface soils in the area of the site may also provide relevant background data that

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

can be utilised to better characterise the potential risks to native ecological receptors (flora and fauna).

The former effluent tunnel that is under the eastern part of the site has not been assessed for potential contamination (including contaminated sediments). The tunnel is considered to have been decommissioned in the converter station site, but what was used to backfill the tunnel void is unknown, and if any material (sediment, contaminated construction materials etc.,) is to be removed from the tunnel area, it is to be tested for contamination and managed accordingly.

The construction phase will generate soils from the construction of footings for site infrastructure and from horizontal boring that will require management. Based on the current design estimates, it is likely that approximately 62,200 m³ of fill will be required to be excavated and managed. Where any excavated fill is geotechnically suitable for reuse and if the spoil is contaminated and retained on the converter station site to address the principles of the EMPCA waste hierarchy, then the operation and decommissioning phase of the project has the potential to generate contaminated soils that will require management.

Improper handling and stockpiling of excavated soils can result in impacts to air quality from dust emanation or surface water quality via stormwater run-off and sedimentation. Any stockpiles of 'contaminated' material must be contained to limit the potential for migration of contamination through dust dispersion, leaching, or stormwater run-off. Controls for all stockpiles should be documented within the project contaminated land management plan to be prepared as part of the project's Construction Environmental Management Plan (CL-01).

Where localised impacts from contamination or ASS are identified (CL-01) soils excavated from these areas will require separate management. Contaminated soil may present a risk to human health or the environment via leaching of contamination to groundwater or surface water, or ingestion/inhalation from dust or volatile contamination.

Surplus soils generated during site works that require offsite disposal must be classified and managed in accordance with EPA Tasmania (2018) Information Bulletin No. 105, *Classification and Management of Contaminated Soil for Disposal*.

Where soils are classified as 'contaminated soil' (level 3) or 'contaminated soil for remediation' (level 4), these soils are to be managed in accordance with the EP Regulations and only transported to a premises authorised by EPA to accept such wastes. No soils to date on the Converter Station site have reported concentrations of contaminants that would classify them as Level 3 or Level 4 wastes.

Should the soils be classified as 'low level contaminated soil' (Level 2), the project may apply to EPA for a permit to retain the soils within the project site. It is estimated that approximately 34,400 m³ of the estimated 62,200 m³ of fill soils that may require removing from the site may be classified as Level 2 (low level contaminated soil).

Given the historical use of the site, there is a potential that ground disturbance in the study area may uncover areas of waste, stained or odorous soil, asbestos containing materials or other potential areas of contamination. Such finds could impact on the health of site users (construction and maintenance workers) or environmental receptors (including terrestrial flora and fauna, as well as surface water ecosystems should contamination disturbance at the location result in discharge to surface water bodies – including the marine environment).

In order to address the potential risks to the environment from unexpected contamination finds an unexpected finds protocol is to be incorporated into the contaminated land management plan.

Soils on the site may also contain hydrocarbon or sulfidic odours which may pose an aesthetic risk to site users or surrounding receptors. Soils that are odorous must be managed to minimise odour via the design of odour controls relevant to the potential impacts identified (if any). Controls may take the

form of odour suppressants, odour capture and treatment, avoidance or other relevant measures to mitigate impacts.

The application of the suggested management and mitigation measures for managing contaminated soils will reduce the potential risks to human health and the environment from Moderate to Low.

Table 8-1: Management and mitigation measures: management of soil

ID	Management and mitigation measure
CL01	Manage excavated soil, contaminated soils and potential risks to the environment due to contamination during construction.

8.2 ACID SULFATE SOILS CAUSING DEGRADATION TO FLORA AND/OR FAUNA IF DISTURBED

The disturbance of ASS has the potential to result in oxidation of sulfidic minerals within the soils and create acid, which can leach metals, degrade constructed project elements or cause degradation to the environment including terrestrial and aquatic flora and fauna, or result in generation of sulfidic odours. The generation of sulfidic odours from exposed ASS are typically highly localised to the areas where ASS are stored, and given the distance to the neared sensitive receptor, impacts are expected to be negligible. Mitigation measures for managing any generation of potential sulfidic odours from any ASS that may be disturbed are included in management and mitigations measures CL01 and CL02.

Soil sampling and analysis completed during this (and prior) assessments confirmed the presence of ASS within the study area that may be disturbed if all fill soils are removed from the site (as assumed in Section 5.6).

Any ASS disturbed during the planned site works should be managed in accordance with the *Tasmanian Acid Sulfate Soil Management Guidelines* (DPIPWE 2009).

The disturbance of potential ASS during the construction, operation or decommissioning phases has the potential to result in a Moderate impact to the environment.

Management measures (for example but not limited to): minimising length of time soils are exposed, covering stockpiles to prevent infiltration of water, bunding of stockpiles to prevent runoff should be implemented for the project to reduce the risk of environmental impact occurring as a result of disturbance of ASS on the project, will reduce the risks of environmental impact from 'moderate' to 'low'. These measures should also include:

- Managing dewatering to limit the generation of acid from oxidation of submerged potential ASS
- Managing drilling cuttings during the HDD drilling through potential ASS.
- Designing settlement loading to manage the submerging of potential oxidised ASS above the water table.

Further ASS testing and assessment is required to inform detailed design and prior to construction so that it can be managed during the construction phase. The approach should be addressed within the contaminated land management plan (appended to the construction environmental management plan (CEMP)) and implemented prior to and during construction.

Management of ASS during operation and decommissioning is limited to managing excavated soils (as per CL-01).

The application of the suggested environmental performance requirements for managing potential ASS within the study area will reduce the potential risks to human health and the environment from Moderate to Low.

The following management and mitigation measure is proposed to minimise the risk of potential impacts.

Table 8-2: Management and mitigation measures: ASS causing degradation to flora and/or fauna if disturbed.

ID	Management and mitigation measure
CL02	Develop and implement acid sulfate soils (ASS) management controls during construction

8.3 EXPOSURE TO ASBESTOS FIBRES

ACM debris has been identified on the ground surface (and visually removed from the surface where observed) at the converter station site and is also likely contained within fill material. A plan of the locations of known asbestos contamination is presented in Figure 12. This figure shows the known contamination; however it is likely that it is present in fill soils across the site. The condition of the ACM is such that it is susceptible to degradation and fibre release and has the potential to impact on human health (site construction and maintenance workers) and terrestrial fauna should the asbestos fibres become airborne and respirable.

The extent of ACM contaminated fill is not known at the site, although several areas where it is present have been identified. It is recommended that additional testing of the extent of asbestos within the fill soils at the site is undertaken (in accordance with the methodologies included in the NEPM), to characterise the nature and extent of ACM within soils (CL-01).

Following completion of the characterisation of the extent of ACM in soils, a remediation design is to be developed and included in the CEMP to manage disturbance of soils and the associated potential impacts to human health. All areas of the site where disturbance of soils are planned and have the potential to contain ACM, these should be remediated to mitigate the potential impacts to the health of site construction and maintenance workers.

The potential exposure to asbestos fibres by human receptors is to be managed during the construction, operational and decommissioning phases of the project through the development and implementation of asbestos management controls within the CEMP.

The application of the suggested management and mitigation measures for managing asbestos and ACM within the study area (as required by mitigation measure CL01) will reduce the potential risks to human health and the environment from Moderate to Low.

8.4 MANAGEMENT OF ROUTINE CONSTRUCTION AND OPERATIONAL IMPACTS

There are a range of potential impacts to the environment or human health that are common to most construction sites, and which are routinely addressed by well-established standard operating procedures or guidelines in the construction industry. Examples of these potential impacts considered to be low to very low risk where managed during construction and operation include (but are not limited to):

- Contamination of near surface soils from storage, transportation, and use of small volumes of chemicals, fuels, and other materials
- Impacts associated with use of subsurface construction materials (sealants, grouts, adhesives etc.)
- Impacts associated with infrastructure construction including roads, drainage areas, concreting, drilling etc.

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

- Impacts from contaminated drilling fluids
- Impacts from spills or leaks from vehicles, storage tanks, and underground infrastructure.
- Impacts from removal of historic infrastructure (including old pipelines, footings etc).

These impacts are to be managed during the construction, operational and decommissioning phases of the project via the development and implementation of project Construction Environmental Management Plans for the Construction, Operation and Decommissioning phases. Management and mitigation measure CL01 includes requirements for managing these potential impacts during construction, and the proposed management and mitigation measure CL03) is specific for managing these potential impacts during operation.

The application of the suggested management and mitigation measures for managing routine construction and operational impacts will reduce the potential risks to human health and the environment from Low to Very Low.

Table 8-3: Management and mitigation measures: management of routine construction and operational impacts

ID	Management and mitigation measure
CL03	Develop and implement measures to manage potential contamination impacts in operation

8.5 RISK ASSESSMENT SUMMARY

Table 8-4 presents a summary of the risk assessment evaluation undertaken for the project.

Table 8-4: Risk assessment summary

Affected value	Potential risk of harm	Project phase	Standard controls	Initial risl	k assessme	ent	Environmental performance requirement	Resid	ual risk ass	essment
value				Likelihood	Consequence	Risk	requirement	Likelihood	Consequence	Risk
Human health/ ecological receptors	Excavated soils (including contaminated soils) may present a risk to human health or ecological receptors if not contained causing degradation of environment or hazards to health	Construction, operation and decommissioning	Excavated soils are managed to limit erosion via wind or surface water via wetting, stormwater controls, bunding and/or covering.	Unlikely	Major	Moderate	A contaminated land management plan is to be developed and implemented to ensure contaminated soils are managed to reduce impacts to the environment (CL01).	Rare	Moderate	Low
Human health/ ecological receptors	Construction/ operational activities lead to generation of contaminated wastes, spills or leaks that may cause a risk to human health or ecological receptors if not contained causing degradation of environment or hazards to health	Construction & Operation	Standard industry practice for managing hazards associated with handling chemicals, wastes, and undertaking underground excavations	Possible	Minor	Low	Implement an environmental management plan during construction and operation that includes controls for managing such hazards (CL01 & CL03).	Rare	Minor	Very Low
Ecological receptors	ASS may cause degradation to flora and/or fauna if disturbed	Construction, operation and decommissioning	Prior to ground disturbance, confirm the location and extent of ASS in relation to the planned locations of site infrastructure	Possible	Moderate	Moderate	ASS management controls are to be developed (as a part of the contaminated land management plan) to characterise the extent of ASS to be disturbed by the project and include measures to prevent oxidation or treatment of ASS (CL02).	Rare	Moderate	Low
Human health	Exposure of asbestos fibres from ACM in soil to human receptors during construction, operation or decommissioning	Construction, operation and decommissioning	Inspection and removal of ACM debris from site surface by appropriately qualified contractors prior to the commencement of construction works	Possible	Moderate	Moderate	Undertake ACM in soil assessment and remediate areas that will be disturbed. Asbestos management controls are to be developed (as a part of the contaminated land management plan) to characterise the extent of asbestos in soils prior to excavations commencing, and include the required controls, and management measures to remediate or manage any asbestos during construction, operation and decommissioning (CL01).	Rare	Moderate	Low

9. INSPECTION AND MONITORING

As detailed above, the risk assessment has identified five key hazards that present potential risks to human health or the environment. Of those four, three will require ongoing management to reduce the risk of potential impacts during construction, operation and/or decommissioning.

To demonstrate that the recommended management and mitigation measures are effective, monitoring is often implemented. The details of an inspection and monitoring program should be documented in the environmental management plan. Inspection or monitoring requirements for standard construction and waste management practices have not been prepared, such as testing spoil for onsite retention/offsite disposal, testing if treated ASS prior to reuse or offsite disposal, reporting of waste disposal as required for contaminated soils/asbestos containing materials, reporting associated with implementing a management plan, periodic monitoring of stormwater/sediment controls etc. No specific monitoring (beyond normal construction monitoring) has been recommended.

10. MANAGEMENT AND MITIGATION MEASURES

The recommended management and mitigation measures to reduce the risks to very low to low (as detailed in Section 8), are summarised in Table 10-1.

A decommissioning plan will be prepared to outline how activities will be undertaken, and potential impacts managed, including due to contamination, addressing the items outlined in the below mitigation measures. The requirements for the decommissioning management plan are outlined in the EIS.

The management and mitigation measures have also been developed with consideration of industry standards and relevant legislation, guidelines and policies. Management and mitigation measures from the groundwater assessment are also relevant to the management of ASS at the Heybridge converter station site.

Table 10-1: Management and mitigation measures

ID	Management and mitigation measures
CL01	Manage excavated soil, contaminated soils and potential risks to the environment due to contamination during construction.
CL01-1	Undertake a detailed site investigation for the site (in accordance with guidance from the NEPM(ASC) - including as a minimum schedules B1 and B2) to define the nature and extent of potential contamination in soils (including asbestos and ASS).
CL01-2	Identify options to manage surplus soils in accordance with the waste hierarchy.
CL01-3	Sample and classify all soils surplus to project requirements in accordance with EPA Tasmania's Information Bulletin 105 – Classification and Management of Contaminated Soil for Disposal, Australian Standards AS4482.1 (2005) and AS4482.2 (1999), and Tasmanian Acid Sulfate Soil Management Guidelines (DPIPWE 2009) to identify the waste classification of the soils.
CL01-4	Any waste soils that are classified as Level 1 (fill material), must be responsibly managed and disposed to a site where the soils do not result in impacts to the environment, or result in pollution (as defined in the EMPCA), which may include disposal to a Solid Inert (Category A) Landfill. Level 1 soils may be reused on the site.
CL01-5	Any waste soils that are classified as Level 2 (low level contaminated soil) and surplus to project requirements are likely to be Controlled Wastes (depending on contaminants) and require disposal to a Category B (Putrescible Landfill). There are opportunities for Level 2 soils to be reused on the site, depending on the nature of the contamination and how they are proposed to be used. The reuse of Level 2 soils on the site will be assessed on a case-by-case basis in consultation with EPA.
CL01-6	Testing to date has not identified any Level 3 or Level 4 Contaminated Soils. If any are identified during redevelopment, they are to be managed in accordance with the EMPCA and <i>Information Bulletin 105</i> .
CL01-7	All transport of contaminated soils must be undertaken only by a waste transport business holding a current relevant approval for the particular waste type (issued under the EMPCA).
CL01-8	 Any temporary storage of soils (including material produced via trenchless construction methods) must: Be stored in appropriately sited stockpiles away from surface drainage lines With bunding Depending on the nature of the contamination in the material to be stockpiled, on a lined or impermeable surface Have surface covering if odourous Be sprayed during periods of dry weather with water or suitable dust suppressant
CL01-9	Any asbestos containing materials identified must be removed from the site by an appropriately qualified and licensed removalist.
CL01-10	Develop an unexpected finds protocol for contamination, asbestos and odour management of excavated soils.
CL01-11	Develop and implement contingency and emergency response procedures to manage fuel, chemical or contamination spills

ID	Management and mitigation measures
CL01-12	Manage all contaminated materials, chemicals, fuels and hazardous materials to mitigate potential environmental harm via:
	 All dangerous goods or environmentally hazardous materials will be stored in appropriately bunded containers within the construction compound, in accordance with relevant Australian Standards and state regulations.
	 Fuel storage on site during construction will be via tankers (between 20,000 L and 50,000 L in size) that will be parked in bunded hardstands within the construction compound, or temporary containerised, self-bunded, above-ground fuel storage systems. Machinery and equipment will then either be refuelled within the compound or in situ via a refuelling truck, which will have on board spill kits and temporary bunding equipment.
	Hydrocarbon and chemical spill kits will be stored within the construction compound(s) and wherever dangerous goods and environmentally hazardous materials are used throughout the project area.
CL01-13	The construction contractor will maintain records of waste soil volumes generated, disposal locations, including disposal facility receipts.
CL02	Develop and implement acid sulfate soils (ASS) management controls during construction
CL02-1	Design excavation and soil disturbance works (including HDD conduits between the site and shoreline) to avoid ASS where practicable.
CL02-2	ASS risk and management will be addressed through the development of an ASS Management Plan in accordance with the <i>Tasmanian Acid Sulfate Soil Management Guidelines 2015</i> (DPIPWE, 2015c).
	The ASS Management Plan will form part of the CEMP for the Project and will be submitted to the EPA for approval prior to construction.
CL02-3	Where disturbance of ASS cannot be avoided, develop management measures to reduce the potential impact from ASS in accordance with the <i>Tasmanian Acid Sulfate Soil Management Guidelines</i> (DPIPWE 2009) and the <i>National Acid Sulfate Soils Guidance</i> (DAWR 2018) as follows:
	 Design excavations or site loadings to ensure that changes in groundwater levels (from dewatering or displacement of soils) do not result in acid generation. Where changes to groundwater levels cannot be avoided, design ASS treatment methods to limit generation or neutralise acid.
	Design HDD cutting and drilling fluid retention systems to allow testing for potential acidic or ASS conditions in HDD returns and allow diversion for treatment.
	 Design and appropriately locate ASS stockpile areas to avoid and otherwise minimise impacts from acid generation including lining, covering and runoff collection to prevent release of acid.
	 Where ASS is identified and disturbed, it must be treated to ensure neutralisation of potential acid generation. Treatment (via liming) is to be at the rates identified during the further ASS assessment to be undertaken in the proposed DSI for mitigation measure CL01-1. Any treatment must be designed with consideration of Tasmanian regulations and guidance and include sufficient neutralising capacity to mitigate acid generation.
	Manage any odours that may be generated during handling of potential ASS via covering, application of odour suppressant or other appropriate measure.
	Prevent oxidation of disturbed ASS so far as reasonably practicable via:
	Scheduling works to limit exposure of ASS to oxidising conditions Second ASS
	 Ensure ASS or acid sulfate rock is not retained in on-site stockpiles for long periods (i.e. greater than 48 hours) without treatment
	 Designing and implement ASS treatment to neutralise ASS prior to other management measures applied.
	 Identify suitable sites for re-use, management or disposal of ASS and acid sulfate rock that may be generated by the project
CL03	Develop and implement measures to manage potential contamination impacts in operation
CL03-1	Fuel storage on site during operation will be in above-ground fuel storage tanks on an impermeable concrete surface (with bunding) designed in accordance with Australian Standard AS1940 <i>The storage and handling of flammable and combustible liquids</i> . Fuel deliveries will be via tankers will be parked in designated refuelling areas which will be designed to contain any potential spills. The fuel storage areas and refuelling areas will contain spill kits and temporary bunding equipment.
CL03-2	Develop and implement contingency and emergency response procedures to manage fuel, chemical or contamination spills.

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

ID	Management and mitigation measures
	Manage all contaminated materials, chemicals, fuels and hazardous materials to mitigate potential environmental harm via:
CL03-3	 All dangerous goods, environmentally hazardous materials or fuels will be stored in appropriately bunded containers at the site, in accordance with relevant Australian Standards and state regulations.
	 Fuel and chemical spill kits will be maintained within close proximity to dangerous goods, hazardous materials or fuel storage areas.

11. CONCLUSION

The contaminated land and ASS impact assessment undertaken for the Heybridge converter station and nearshore area identified four potential hazards with a low to high risk of causing impacts to the environment without the application of additional controls including:

- 1. Management of excavated soils (including contaminated soils and asbestos contamination)
- 2. ASS, and
- 3. Management of routine construction and operational impacts.

The potential management measures that may be applied to ensure compliance with the nominated management and mitigation measures include:

Manage contaminated soils – Undertake testing of soils prior to commencing excavation works to confirm the contamination status of soils (including the nature and extent of asbestos and ASS) prior to disturbance, so that appropriate management controls can be applied to ensure impacts to the environment are mitigated. Management measures may include offsite disposal of contaminated soils or remediation and reuse. Odour management may also be required to be implemented depending on whether odorous soils are encountered. Application of an odour suppressant may be suitable for managing risks to air quality from contamination related odours. The asbestos testing to be undertaken across the Heybridge converter station site should confirm the nature and extent of asbestos in soils. Management of asbestos containing materials in soils at the converter station site may include excavation and disposal from site, abatement (physical removal of asbestos containing materials from soils) and reuse or capping with a barrier.

ASS - Undertake testing of proposed excavation areas for potential ASS to confirm the extent of ASS to be disturbed, and how impacts from any identified ASS may be managed to limit impacts to the environment. Management measures include ASS neutralisation on site, avoiding disturbing ASS, managing groundwater dewatering to reduce ASS generation. Excavated ASS may generate sulfidic odours that can be managed via the application of standard ASS management measures (e.g. neutralisation, odour suppressant application).

The assessment of potential impacts to the environment proposed by the project have the potential to cause potentially unacceptable impacts to human health or the environment. However the application of the management and mitigation measures are considered to reduce the potential impacts to the environment to acceptable levels and would ensure that the site is acceptable for commercial or industrial land uses (as defined in the NEPM).

12. REFERENCES

AS/NZS (2018) Australian/New Zealand Standard for risk management, Australian Standards/ New Zealand Standards

DAWR (2018) National Acid Sulfate Soils guidance: a synthesis, Department of Agriculture and Water Resources, 2018,

DPIPWE (2009) *Tasmanian Acid Sulfate Soil Management Guidelines*, Department of Primary Industries, Parks, Water and the Environment, 2009

EMPCA (1994) *Environmental Management and Pollution Control Act*, Environment Protection Authority (Tas), State Government of Tasmania, 1994.

EPA (2018) Classification and management of contaminated soil for disposal, Environment Protection Authority (Tas), State Government of Tasmania, 2018

ES&D (2020) Due Diligence, Former Tioxide factory site – Heybridge, V4, Environmental Service & Design, 30 October 2020

GBG (2022) Project Marinus – Heybridge Land Remediation Geophysical Investigation, GBG Group, 15 March 2022

IPM (2022) Marinus Link, Marinus Link Development Site, Bass Highway, Heybridge, TAS 7316 Site Surface Asbestos Inspection Report, IPM Consulting Services, October 2022

Jacobs (2022a) Ground Conditions Factual Report, Project Marinus – Heybridge Converter Station Ground Investigation, Rev A, Jacobs, 1 April 2022

Jacobs (2022b) Heybridge Converter Station – Geotechnical Interpretive Report, Project Marinus – Heybridge Converter Station Geotechnical Site Investigation, Rev A, Jacobs, 24 May 2022)

Marine Solutions (2024) HVDC Cable Crossing of Tioxide Outfall, Summary of Works, Marine Solutions Tasmania Pty Ltd, 27 August 2024

NEPC (2013) National Environmental Protection (Assessment of Site Contamination) Measure 1999, as amended in 2013, National Environment Protection Council.

pitt&sherry (2007) Former Tioxide Australia Pty Ltd, Ocean Outfall Tunnel Assessment Report, pitt&sherry, August 2007

pitt&sherry (2020) Heybridge Converter Station, Environmental Review of Due Diligence Report, Rev A, pitt&sherry, 16 November 2020

pitt&sherry (2022) Marinus Link – Contamination and Acid Sulfate Soils Desktop Review Findings for the Tasmanian Component, dated 19 December 2022

SA Radiation (2020) Heybridge Tioxide Site Radiation Survey, SA Radiation, 1 December 2020

Standards Australia (2005). *'Guide to the Investigation and Sampling of Sites with Potentially Contaminated Soil - Part 1: Non-Volatile and Semi-Volatile Compounds'*, Australian Standard AS4482.1-2005, Standards Australia, 2005

Synnot & Wilkinson (1996a) Tioxide Australia Soil Contamination Assessment Report, Burnie, Tasmania, May 1996

Synnot & Wilkinson (1996b) Tioxide Australia, Draft 2, Environmental Decommissioning and Rehabilitation Plan, May 1996

Synnot & Wilkinson (1997) Tioxide Australia Pty Ltd, 1996 Marine Survey Report, September 1997

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

Tetra Tech Coffey (2022) Marinus Link, Tioxide sediment analysis report, Rev A, Tetra Tech Coffey, 28 July 2022

TSCP (2009) Tasmanian State Coastal Policy, State Government of Tasmania, 2009

WA DOH (2009) Guidelines for the Assessment, Remediation and Management of Asbestos-Contaminated Sites, Department of Health, 2009

WCC (2007a) Site Contamination Assessment, Former Tioxide Factory site, Heybridge (the "Front site"), William C. Cromer, 6 June 2007

WCC (2007b) Follow-up Site Contamination Assessment, Bullant Ridge, at the former Tioxide Factory site, Heybridge, William C. Cromer, 14 July 2007

WHS Act (2012) Work Health and Safety Act, State Government of Tasmania, 2012

WHS Regs (2012) Work Health and Safety Regulations, State Government of Tasmania, 2012

WQP (1997) State Policy of Water Quality Management, State Government of Tasmania, 1997

APPENDIX A: STATEMENT OF LIMITATIONS

IMPORTANT INFORMATION ABOUT YOUR TETRA TECH COFFEY ENVIRONMENTAL REPORT

Introduction

This report has been prepared by Tetra Tech Coffey for you, as Tetra Tech Coffey's client, in accordance with our agreed purpose, scope, schedule and budget.

The report has been prepared using accepted procedures and practices of the consulting profession at the time it was prepared, and the opinions, recommendations and conclusions set out in the report are made in accordance with generally accepted principles and practices of that profession.

The report is based on information gained from environmental conditions (including assessment of some or all of soil, groundwater, vapour and surface water) and supplemented by reported data of the local area and professional experience. Assessment has been scoped with consideration to industry standards, regulations, guidelines and your specific requirements, including budget and timing. The characterisation of site conditions is an interpretation of information collected during assessment, in accordance with industry practice.

This interpretation is not a complete description of all material on or in the vicinity of the site, due to the inherent variation in spatial and temporal patterns of contaminant presence and impact in the natural environment. Tetra Tech Coffey may have also relied on data and other information provided by you and other qualified individuals in preparing this report. Tetra Tech Coffey has not verified the accuracy or completeness of such data or information except as otherwise stated in the report. For these reasons the report must be regarded as interpretative, in accordance with industry standards and practice, rather than being a definitive record.

Your report has been written for a specific purpose

Your report has been developed for a specific purpose as agreed by us and applies only to the site or area investigated. Unless otherwise stated in the report, this report cannot be applied to an adjacent site or area, nor can it be used when the nature of the specific purpose changes from that which we agreed.

For each purpose, a tailored approach to the assessment of potential soil and groundwater contamination is required. In most cases, a key objective is to identify, and if possible quantify, risks that both recognised and potential contamination pose in the context of the agreed purpose. Such risks may be financial (for example, clean up costs or constraints on site use) and/or physical (for example, potential health risks to users of the site or the general public).

Limitations of the Report

The work was conducted, and the report has been prepared, in response to an agreed purpose and scope, within time and budgetary constraints, and in reliance on certain data and information made available to Tetra Tech Coffey.

The analyses, evaluations, opinions and conclusions presented in this report are based on that purpose and scope, requirements, data or information, and they could change if such requirements or data are inaccurate or incomplete.

This report is valid as of the date of preparation. The condition of the site (including subsurface conditions) and extent or nature of contamination or other environmental hazards can change over time, as a result of either natural processes or human influence. Tetra Tech Coffey should be kept appraised of any such events and should be consulted for further investigations if any changes are noted, particularly during construction activities where excavations often reveal subsurface conditions.

In addition, advancements in professional practice regarding contaminated land and changes in applicable statues and/or guidelines may affect the validity of this report. Consequently, the currency of conclusions and recommendations in this report should be verified if you propose to use this report more than 6 months after its date of issue.

The report does not include the evaluation or assessment of potential geotechnical engineering constraints of the site.

Interpretation of factual data

Environmental site assessments identify actual conditions only at those points where samples are taken and on the date collected. Data derived from indirect field measurements, and sometimes other reports on the site, are interpreted by geologists, engineers or scientists to provide an opinion about overall site conditions, their likely impact with respect to the report purpose and recommended actions.

Variations in soil and groundwater conditions may occur between test or sample locations and actual conditions may differ from those inferred to exist. No environmental assessment program, no matter how comprehensive, can reveal all subsurface details and anomalies. Similarly, no professional, no matter how well qualified, can reveal what is hidden by earth, rock or changed through time.

The actual interface between different materials may be far more gradual or abrupt than assumed based on the facts obtained. Nothing can be done to change the actual site conditions which exist, but steps can be taken to reduce the impact of unexpected conditions.

For this reason, parties involved with land acquisition, management and/or redevelopment should retain the services of a suitably qualified and experienced environmental consultant through the development and use of the site to identify variances, conduct additional tests if required, and recommend solutions to unexpected conditions or other unrecognised features encountered on site. Tetra Tech Coffey would be pleased to assist with any investigation or advice in such circumstances.

Recommendations in this report

This report assumes, in accordance with industry practice, that the site conditions recognised through discrete sampling are representative of actual conditions throughout the investigation area. Recommendations are based on the resulting interpretation.

Should further data be obtained that differs from the data on which the report recommendations are based (such as through excavation or other additional assessment), then the recommendations would need to be reviewed and may need to be revised.

Report for benefit of client

Unless otherwise agreed between us, the report has been prepared for your benefit and no other party. Other parties should not rely upon the report or the accuracy or completeness of any recommendation and should make their own enquiries and obtain independent advice in relation to such matters.

Tetra Tech Coffey assumes no responsibility and will not be liable to any other person or organisation for, or in relation to, any matter dealt with or conclusions expressed in the report, or for any loss or damage suffered by any other person or organisation arising from matters dealt with or conclusions expressed in the report.

To avoid misuse of the information presented in your report, we recommend that Tetra Tech Coffey be consulted before the report is provided to another party who may not be familiar with the background and the purpose of the report. In particular, an environmental disclosure report for a property vendor may not be suitable for satisfying the needs of that property's purchaser. This report should not be applied for any purpose other than that stated in the report.

Interpretation by other professionals

Costly problems can occur when other professionals develop their plans based on misinterpretations of a report. To help avoid misinterpretations, a suitably qualified and experienced environmental consultant should be retained to explain the implications of the report to other professionals referring to the report and then review plans and specifications produced to see how other professionals have incorporated the report findings.

Given Tetra Tech Coffey prepared the report and has familiarity with the site, Tetra Tech Coffey is well placed to provide such assistance. If another party is engaged to interpret the recommendations of the report, there is a risk that the contents of the report may be misinterpreted and Tetra Tech Coffey disowns any responsibility for such misinterpretation.

Data should not be separated from the report

The report as a whole presents the findings of the site assessment and the report should not be copied in part or altered in any way. Logs, figures, laboratory data, drawings, etc. are customarily included in our reports and are developed by scientists or engineers based on their interpretation of field logs, field testing and laboratory evaluation of samples. This information should not under any circumstances be redrawn for inclusion in other documents or separated from the report in any way.

This report should be reproduced in full. No responsibility is accepted for use of any part of this report in any other context or for any other purpose or by third parties.

Responsibility

Environmental reporting relies on interpretation of factual information using professional judgement and opinion and has a level of uncertainty attached to it, which is much less exact than other design disciplines. This has often resulted in claims being lodged against consultants, which are unfounded. As noted earlier, the recommendations and findings set out in this report should only be regarded as interpretive and should not be taken as accurate and complete information about all environmental media at all depths and locations across the site.

APPENDIX B: SUMMARY OF HISTORIC REPORTS

APPENDIX B: REVIEW OF PREVIOUS INVESTIGATIONS

This appendix provides a summary of the review of the previously prepared environmental assessments undertaken within the study area.

In the mid-1990s, Tioxide Australia undertook several environmental assessments of the Heybridge processing site, both prior to and following site demolition and rehabilitation. A summary of the investigations is provided below. Copies of the reports prior to WCC (2007) were not available for review, however summaries were provided in WCC (2007a).

The reports reviewed included:

- WCC (2007a) Site Contamination Assessment, Former Tioxide Factory site, Heybridge (the "Front site"),
 William C. Cromer, 6 June 2007
- WCC (2007b) Follow-up Site Contamination Assessment, Bullant Ridge, at the former Tioxide Factory site, Heybridge, William C. Cromer, 14 July 2007
- ES&D (2020) Due Diligence, Former Tioxide factory site Heybridge, V4, Environmental Service & Design, 30 October 2020
- pitt&sherry (2020) Heybridge Converter Station, Environmental Review of Due Diligence Report, Rev A, pitt&sherry, 16 November 2020
- SA Radiation (2020) Heybridge Tioxide Site Radiation Survey, SA Radiation, 1 December 2020
- GBG (2022) Project Marinus Heybridge Land Remediation Geophysical Investigation, GBG Group, 15 March 2022
- Jacobs (2022a) Ground Conditions Factual Report, Project Marinus Heybridge Converter Station Ground Investigation, Rev A, Jacobs, 1 April 2022
- Jacobs (2022b) Heybridge Converter Station Geotechnical Interpretive Report, Project Marinus Heybridge Converter Station Geotechnical Site Investigation, Rev A, Jacobs, 24 May 2022)
- Tetra Tech Coffey (2022) Marinus Link, Tioxide sediment analysis report, Rev A, Tetra Tech Coffey, 28 July 2022
- IPM (2022) Marinus Link, Marinus Link Development Site, Bass Highway, Heybridge, TAS 7316 Site Surface Asbestos Inspection Report, IPM Consulting Services, October 2022
- pitt&sherry (2022) Marinus Link Contamination and Acid Sulfate Soils Desktop Review Findings for the Tasmanian Component, dated 19 December 2022

A summary of these and previous reports are provide below.

Dames & Moore - 1992

30 handauger holes and 3 test pits were installed across the factory site. Shallow groundwater was encountered in four of the test pits. 46 samples were analysed for metals and hydrocarbons, and concentrations exceeded the industrial land use criteria (available at the time) at three locations.

Synnot and Wilkinson (1996a)

103 boreholes were installed at 52 locations across the site and 202 soil samples and 12 groundwater samples collected. Concentrations of copper, lead, zinc, chromium, nickel, cadmium and mercury were elevated, and petroleum hydrocarbons were found where fuels had been stored or used. The report indicated that generally contamination was isolated to several hotspots and mainly contained within the fill soils.

Shallow groundwater had a low pH and high concentrations of metals, but deeper groundwater was reported to not contain concentrations of contaminants under the plant.

Lane Consulting (1996)

Two groundwater wells were installed and sampled. GW17 was installed to a depth of 8m into the basement bedrock, and GW 19 was installed to 2.1m into the shallow groundwater. Samples were analysed for cation and anions, as well as a limited metals suite. The results are summarised below.

Table B1: Summary of Lane Consulting (1996) groundwater results

	GW17	GW19	Comments
рН	4.5	6.7	Regional groundwater was acidic and potentially presents risk to buildings and structures, shallow groundwater mildly acidic, but within screening criteria.
TDS (mg/L)	700	1,300	Indicates potable water present at depth, but shallower water more saline and not suitable for drinking
Chromium (µg/l)	3	<0.05	Below screening criteria for protection of marine water quality (ANZG 2018) for 95% protection (27 µg/L)
Copper (µg/I)	3	2	Above screening criteria for protection of marine water quality (ANZG 2018) for 95% protection (1.3 µg/L)
Iron (μg/l)	9,500	230	No criteria for protection of marine water quality, not considered to present unacceptable risk. May cause fouling of irrigation equipment if used for irrigation purposes.
Lead (μg/l)	4	4	Below screening criteria for protection of marine water quality (ANZG 2018) for 95% protection (4.4 µg/L)
Zinc (µg/l)	86	38	Above screening criteria for protection of marine water quality (ANZG 2018) for 95% protection (8 µg/L)

Synnot and Wilkinson (1996b)

This report was the environmental decommissioning and rehabilitation plan (EDRP) prepared for the site. Some key aspects were that the plan included:

- Objective was to remove contaminated soil and shallow groundwater to allow industrial uses.
- Contaminated soil was to be excavated and placed in a landfill cell to the south of the study area (assumed to be metals contaminated soils and/or radioactive materials)
- Soil contaminated with hydrocarbons was to be excavated and bioremediated and aerated and likely reused onsite
- Contaminated shallow groundwater was to be dewatered using a system of shallow bores and discharged via the outfall to Bass Strait.
- The EDRP was approved by the Director of the Department of Environment, Land and Water (DELM).

Tioxide Australia (1998a)

This report documented the remediation of soil contamination associated with the demolition and removal of the factory. Several rounds of targeted excavation on various areas of the factory was undertaken. The key contamination areas included:

Bullant Ridge – Two areas of buried sludge and rubbish (comprising approx.. 7,800 m3) was excavated
and removed to the Minna Road landfill (outside of the study area). Radioactivity testing in this area was
undertaken as historically radioactive lead was cut up and encased in concrete in this area. The results of
the lead and radioactivity testing indicated results were "not measurable".

- Western Stores Compound Elevated concentrations of metals (copper, lead, mercury and zinc) were
 reported above the industrial criteria. Several rounds of excavations in this area were undertaken and
 final validation results were reported to be below the adopted site criteria.
- Underground diesel tank A small spill during removal was cleaned up and all results for hydrocarbons were below the laboratory limits of reporting.
- Lead burning workshop Several rounds of excavation and validation (including shallow groundwater removal) was undertaken in this area and reportedly "generally" free from lead contamination. The area was backfilled with reported 'clean fill'. The Ph of water seeping into the excavation was reportedly 2.3.
- Contractors area Several rounds of soil removal to remove both hydrocarbon and metals (lead) was undertaken and validation sampling reported concentrations below site criteria.

Grid sampling on a 30m grid spacing across the site was undertaken, and an estimated total of 155 validation samples (in addition to the grid sampling) was undertaken.

Tioxide Australia (1998b)

This report included addendum remediation and testing activities on two areas including the Fitters workshop and the Thompson Boiler – both of which were originally impacted by mercury. The soils removed from these areas were disposed offsite to the Dulverton landfill. Validation sampling beneath these areas reportedly confirmed that the remediation was successful.

Cromer (2000)

This report included the testing of soils and groundwater (including installation of three groundwater bores) adjacent to the original effluent tunnel. The tunnel had reportedly been constructed via traditional below ground mining techniques via horizontal tunnelling and brick lining. Testing of the soils and groundwater in the vicinity of the tunnel did not identify any contaminants above screening criteria (NEPM 1999). Groundwater in the underlying Precambrian siltstone/sandstone was encountered at depths of 4 to 5m below the ground.

Cromer (2004)

This report involved the excavation and testing of soils from 13 testpits to inform the fill profile present on the site. Fill was encountered at depths ranging from 0.2 to 1.3m across the site, and soil results were generally below the NEPM HIL-A screening criteria, with the exception of lead in one sample (AB1 – 1,090 mg/kg) which corresponded to the approximate location of the TiCl4 drum burial area.

WCC (2007a)

This reported included a summary of all previous environmental sampling and remediation works undertaken, and also included the sampling of soils from 62 new test-pits installed on a nominal 30m grid across the site. Up to 164 samples were tested for a variety of contaminants including pH, metals, sulfate, total petroleum hydrocarbons (TPH), benzene, toluene, ethyl benzene, xylenes (BTEX), volatile organic compounds (VOCs), polycyclic aromatic hydrocarbons (PAHs) and polychlorinated biphenyls (PCBs). Groundwater samples were collected from three test-pits where water flowed in during excavation and analysed for pH, metals, sulfate, TPH, BTEX, VOC, PAH, electrical conductivity (EC) and total dissolved solids (TDS).

The testing of soils indicated that the site was underlain by a varying thickness of fill with various isolated wastes including fragments of concrete, bricks, pipework, steel, wiring, plastic sheeting, timber, and minor areas of cinders, ash, sludge, ilmenite ore, and (only on Bullant ridge) crushed spent titanium tetrachloride drums and suspected asbestos fragments.

The analytical results of the testing indicated that the majority of the site soils contained concentrations of contaminants below the adopted industrial criteria. However isolated locations contained concentrations of lead (location E12 in the western storage area up to 4,900 mg/kg), manganese (near the Thomson boiler area up to 6,400 mg/kg), and areas of the subsurface contained hydrocarbon odours (two locations E32 and E45). Metals concentrations in soils also exceed the adopted waste disposal criteria for fill material across the site. Sulfate (as SO₄) was identified at several locations ranging up to 2,000 mg/kg and areas of low pH (down to 2.8 mmol.H⁺).

Soil results were generally also below the site specific NEPM EILs for the site, with the exception of nickel (21 samples from shallow surface soils exceeded calculated EIL – 65 mg/kg), and zinc (12 samples from fill soils across the site exceeded the NEPM EIL – 190 mg/kg).

Groundwater testing noted the presence hydrocarbon sheens and elevated concentrations of hydrocarbons (TPH C10-C36), but no volatile contamination was identified at location E32 (near the lead burning workshop remediation area) and E45 (near the former diesel bund area).

WCC (2007b)

This report included follow up assessment of the Bullant Ridge area where WCC (2007a) identified crushed titanium tetrachloride drums and potential asbestos fragments. A trench approximately 15m long was dug where the drums were originally identified, and an estimated volume of between 150 and 200 m³ of waste drums were present in this area. Asbestos in the form of ACM and gaskets were observed at several locations on the site as well.

A radiation survey conducted in this area by the Tasmanian Health Physics Branch noted that average background radiation was 300 nSv/hr (Bass Highway intersection with Minna Road), and measurements across the Bullant Ridge site ranged from <50 to 500 nSv/hr, with any locations where results were above the background range of 300 nSv/hr, re-tested using a different survey direction, and all results were considered to be representative of background radiation conditions.

This area is outside of the study area, and unlikely to be disturbed during the project.

ES&D (2020)

This report collates data from a number of different sources to provide a due-diligence summary for TasNetworks during considerations for acquisition of the Heybridge converter station site. The report collated historic data, but also undertook additional sampling of soils in areas where WCC (2007a) identified elevated concentrations of metals. The results indicated that elevated concentrations of metals were present, but generally below commercial/industrial land use screening criteria and unlikely to present a potential risk to site users under the proposed use.

The concentrations measured were also below the NEPM EILs calculated for the site.

pitt&sherry (2020)

This report included a summary of the prior environmental due diligence report prepared by ES&D for the Converter station site. No new information was included in the report.

SA Radiation (2020)

This report detailed a radiation survey undertaken on the Converter Station site and involved establishment of background radiation ranges from three sites (one in Burnie, and two approximately 500m east and south of the site). A local background range of 55 nSv/hr was adopted, and a screening criteria of 85 nSv/hr adopted as the trigger to undertake further testing at any particular location. Of the 203 measurements taken at the site, only one (in the centre of the converter station site) was reported above the screening level with a

measured result of 107 nSv/hr. This location was where bedrock was present at the surface, and corresponded to other bedrock results at the far east and west of the site. Additional testing around the 107nSV/hr location showed it was an anomaly, with all other readings within 5m below 80 nSv/hr. The report concluded that the top 30 cm of soil at the site did not identify any areas of NORM at the site and that elevated dose rates of up to 107 nSv/hr at areas where basement rocks are located are possible, but are within the local natural background ranges (106 nSv/hr measured at Knoll Crest to the east of the site).

The report recommended that additional testing is undertaken during deeper footing excavations and from any scale or sediments that may be within the effluent pipeline if it is recovered to check for the presence of NORM.

GBG (2022)

This report detailed the findings of a geophysical survey of the site. They survey did not identify any potential underground storage tanks, but did identify several areas of footings, potential drainage pipelines, and the effluent tunnel.

pitt&sherry (2022)

This report included a desktop review of previously collected information to identify potential sources of contamination that may be on the site. The report noted the presence of ACM at two locations on the site, and also included a radiation survey of the site. The results of the survey were similar to previous studies with readings ranging from 20 to 123 nSV/hr, all within background ranges.

Jacobs (2022a/b)

This report detailed the geotechnical investigation undertaken at the Converter station site. The assessment included the collection and analysis of soil samples from six boreholes and nine testpits from across the site. Soil samples were collected at approximately 0.5m intervals throughout each sampling location, and samples submitted for a wide range of potential contaminants including metals, TPH, BTEX, PAH, pH, chloride, sulfate, cyanide, VOCs, semi-VOCs, perf-fluoroalkylated substances (PFAS), organochlorine pesticides (OCPs), PCBs, phenols, pH, asbestos, and leachable metals (as well as some leachable hydrocarbons). Some samples were also tested in-field for ASS, and also sent to the laboratory for ASS testing.

Five of the soil bores were converted to groundwater wells and tested for a similar range of potential contaminants (including nitrate, nitrate and ammonia). Groundwater was encountered at depths ranging from 1 to 3m below the site surface.

NORM testing was also undertaken during test-pitting to measure radioactivity at depth. Local background ranges were reported at 41 to 73 nSv/hr, and the highest measurement was 115 nSv/hr at a depth of 1m in the centre of the site (near the SA Radiation previously identified elevated reading).

Soil analysis reported concentrations of nickel (84 mg/kg), lead (1640 mg/kg) and zinc (230 mg/kg) at three locations above the NEPM EILs calculated for the site, with lead also above the adopted industrial screening criteria.

Acid sulfate testing undertaken at the site identified large pH oxidation responses in the five samples tested (pH change of between 1.7-3 pH units). The natural pH of the soils ranged from 3.7 to 7.1 indicating actual ASS may be present at some locations, and potential ASS may be present throughout the soil profile. Additional SPOCAS testing on the five samples by the laboratory indicated that two samples from the centre to south of the site reported net acidity of between 0.035 to 0.096 %S, above the adopted 0.03 %S screening criteria indicating potential ASS may be present.

Groundwater analysis reported concentrations of cobalt, copper and zinc above the ANZG Marine Water 95% toxicant DGV criteria uniformly across the site.

Concentrations of PFAS were not reported in soil at the site above the laboratory reporting limits. Concentrations of PFOS (ranging between <0.01 to 0.11 μ g/L), PFOA (<0.01 to 0.02 μ g/L) and PFHxS + PFOS (<0.01 to 0.32 μ g/L) were reported in three groundwater wells on the site. The concentrations of PFOS were below the Ecological marine criteria (0.13 μ g/L – PFAS NEMP), and concentrations of PFHxS and PFOA were below all other groundwater quality criteria.

Tetra Tech Coffey (2022)

This report detailed the offshore sediment sampling undertaken in the area where the sub-sea cable will run. 26 sediment samples were collected from the seabed at 14 locations at depths of up to 1m below the seabed and analysed for metals and ASS.

ASS results for net acidity were all below the laboratory reporting limits and adopted screening criteria. Concentrations of metals (arsenic, chromium, nickel and silver) were reported to be above the adopted Sediment quality guidelines (DGVs) although the concentrations of nickel, chromium, nickel and silver were generally considered to be naturally occurring. Location SED E5 (approximately 5km offshore) reported elevated concentrations of arsenic, chromium and nickel that were much higher than other results, indicating that this area may be impacted by the effluent pipe output from the site. Elevated concentrations of iron and titanium were also identified in deeper samples (greater than 1km offshore), which may also be associated with the effluent outfall pipe. However, generally, the concentrations of metals were below the upper guideline values, indicating toxic affects to benthic organisms would be unlikely.

IPM (2022)

This report detailed the results of an asbestos surface survey undertaken across the Converter Station site. The study comprised visual observations of the surface and identified fragments of asbestos containing materials in the form of bonded cement sheeting at several locations at the north of the converter station site. The fragments in poor condition and were removed during the works, however the presence of heterogenous fill across this area of the site (and that some were identified on a soil stockpile), there is a high likelihood that additional ACM is present in fill soils at the site.

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

APPENDIX C: TABLES

TABLE 1 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Analytical Results - Acid Sulfate Soils

				ASS Field Te	st	рН	Actual	Acidity	Potentia	al Acidity	ll .	utralising acity*	Net A	Acidity
			pH fox	рН (F)	Reaction Rate	pH (KCI)	Acid Trail : Total Sulfidic Acidity	Sulfur Trail: % Sulfur	Acid Trail : Total Sulfidic Acidity	Sulfur Trail: % Sulfur	Acid Trail : Total Sulfidic Acidity	Sulfur Trail: % Sulfur	Acid Trail : Total Sulfidic Acidity	Sulfur Trail: % Oxidisable Sulfur
			pH Unit	pH Unit	-	-	mole H+/t	%S	mole H+/t	%S	mole H+/t	%S	MOL H+/T	% S
EQL			0.1	0.1	0	0.1	2	0.003	3	0.005	2	0.02	10	0.02
TAS ASS Management	Guidelines Action Criteria (N	Med. Texture) (100 - 1000 t)											36	0.06
	: Guidelines Action Criteria (N												18	0.03
Location	Field ID	Geology												
	HEY1_0.0-0.2	FILL: Sandy Clay	3.1	5.8	3.0	-	-	-	-	-	-	-	-	-
HEY1	HEY1_0.4-0.7	FILL: Clayey Sand	4.2	6.4	4.0	-	-	-	-	-	-	-	-	-
11211	HEY1_0.9-1.0	Clayey Gravel	-	-	-	5.9	7.2	0.012	4.2	0.007	NA	NA	11	< 0.02
	HEY1_1.4-1.5	Gravelly Clay	-	-	-	5.1	7.8	0.013	6.9	0.011	NA	NA	15	0.02
	HEY2_0.0-0.2	FILL: Sandy Clay	4.1	5.6	4.0	-	-	-	-	-	-	-	-	-
HEY2	HEY2_0.6-0.7	Clay	3.1	5.6	4.0	-	-	-	-	-	-	-	-	-
	HEY2_1.4-1.5	Clay	-	-	-	4.6	41	0.065	5.2	0.008	NA	NA	46	0.07
	HEY3_0.0-0.2	FILL: Sandy Clay	4.8	7.5	4.0	-	-	-	-	-	-	-	-	-
HEY3	HEY3_0.9-1.0	Sand	-	-	-	5.3	4.8	0.008	<3	< 0.005	NA	NA	<10	< 0.02
	HEY3_1.4-1.5	Sand	-	-	-	6.0	3.2	0.005	<3	< 0.005	NA	NA	<10	< 0.02
	HEY4_0.0-0.2	FILL: Sandy Clay	5.3	8.3	4.0	-	-	-	-	-	-	-	-	-
HEY4	HEY4_0.4-0.5 (A)	FILL: Sandy Clay	4.8	7.9	4.0	-	-	-	-	-	-	-	-	-
11214	HEY4_0.9-1.0	Sand	-	-	-	7.1	<2	< 0.003	<3	< 0.005	33	0.05	<10	< 0.02
	HEY4_1.4-1.5	Sand	-	-	-	6.4	<2	< 0.003	<3	< 0.005	NA	NA	<10	< 0.02
	HEY5_0.0-0.2	FILL: Sandy Clay	6.9	9.1	4.0	-	-	-	-	-	-	-	-	-
HEY5	HEY5_0.4-0.5	FILL: Sandy Clay	5.8	8.0	3.0	-	-	-	-	-	-	-	-	-
11213	HEY5_0.9-1.0	FILL: Sandy Clay	5.2	7.2	3.0	-	-	-	-	-	-	-	-	-
	HEY5_1.4-1.5	FILL: Sandy Clay	4.9	6.3	3.0	-	-	-	-	-	-	-	-	-
	HEY6_0.0-0.3	FILL: Sandy Clay	4.0	6.5	3.0	-	-	-	-	-	-	-	-	-
HEY6	HEY6_0.4-0.5	FILL: Sandy Clay	2.5	5.5	3.0	4.9	22	0.036	5.1	0.008	NA	NA	27	0.04
11210	HEY6_0.9-1.0	FILL: Sandy Clay	3.1	5.5	3.0	-	-	-	-	-	-	-	-	-
	HEY6_1.4-1.5	FILL: Sandy Clay	-	-	-	4.8	11	0.018	<3	<0.005	NA	NA	11	<0.02
	HEY7_0.0-0.2	FILL: Clayey Sand	2.8	6.1	3.0	-	-	-	-	-	-	-	-	-
HEY7	HEY7_0.5-0.6	FILL: Clayey Sand	3.0	6.1	3.0	-	-	-	-	-	-	-	-	-
11517	HEY7_0.9-1.0	FILL: Clay	3.0	4.4	3.0	4.6	48	0.077	37	0.060	NA	NA	85	0.14
	HEY7_1.4-1.5	FILL: Clay	-	-	-	4.5	42	0.068	16	0.025	NA	NA	67	0.11
	HEY8_0.0-0.3	FILL: Clayey Sand	2.8	6.1	4.0	-	-	-	-	-	-	-	-	-
	HEY8_0.4-0.5	FILL: Clayey Sand	2.9	5.1	3.0	5.9	2.7	0.004	7.1	0.011	NA	NA	<10	<0.02
HEY8	HEY8_0.6-0.7	FILL: Clayey Sand	2.9	5.3	3.0	-	-	-	-	-	-	-	-	-
	HEY8_0.9-1.0	FILL: Clayey Sand	2.9	4.8	3.0	5.2	6.0	0.010	6.6	0.011	NA	NA	13	0.02
	HEY8 1.3-1.4	Sandy Clay	-	-	-	4.4	24	0.039	<3	< 0.005	NA	NA	30	0.05

Criteria:

(DPIPWE 2009) Tasmanian Acid Sulfate Soil Management Guidelines Table 2 Action Criteria for Medium Texture material: 100 - 1000 tonnes disturbed material

754-MELEN215878 1 of 14

⁽DPIPWE 2009) Tasmanian Acid Sulfate Soil Management Guidelines Table 2 Action Criteria for Medium Texture material: > 1000 tonnes disturbed material

^{*}Acid Neutralising Capacity is only required if pH (KCI) ≥ pH 6.5

TABLE 2 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station

Analytical Results - Stockpiles Preliminary Classification

					Field ID	SP2_01	SP2_02	SP2_03	SP3_01	SP5_01	SP5_02	SP5_03	SP8_01	SP8_02	SP9_01	SP9_02	SP9_03	SP9_04	SP10_01	SP10_02	SP10_03
					Stockpile	Stockpile 2	Stockpile 2	Stockpile 2	Stockpile 3	Stockpile 5	Stockpile 5	Stockpile 5	Stockpile 8	Stockpile 8	Stockpile 9	Stockpile 9	Stockpile 9	Stockpile 9	Stockpile 10	Stockpile 10	-
					Date Lab Report Number	8/03/2023 971775															
				EPA Tas IB105		372770	572776	572770	572776	572776	572776	512110	572776	572776	572770	372770	572770	0.2	0.2	312110	0.2
			EPA Tas IB105	Low Level	EPA Tas IB105																
			Contaminated Soil (Level 3)	Contaminated Soil	Fill material (Level 1)																
	Unit	EQL	(200013)	(Level 2)	(ECVCI 1)																
Physical Parameters	0/																				
Moisture Content (dried @ 103°C)	%	1	-	-	-	21	22	15	13	11	14	15	7.1	7.2	16	12	13	22	19	6.0	15
Metals Arsenic	mg/kg	2	750	200	20	<2	2.2	<2	<2	2.3	2.6	<2	2.0	<2	<2	<2	<2	<2	<2	3.3	17
	mg/kg	0.4	400	40	3	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium (III+VI)	mg/kg	5	5,000	500	50	130	280	140	87	20	29	17	29	63	62	67	31	21	84	<5	70
Copper Lead	mg/kg mg/kg	5	7,500 3,000	2,000 1,200	100 300	50 110	170 48	43 30	64 130	17 50	17 380	15 78	19 33	24 18	22 14	24 29	18 11	24 13	32 41	<5 11	85 55
Mercury	mg/kg	0.1	110	30	1	0.3	6.7	0.2	9.8	0.2	0.4	0.3	<0.1	0.2	0.1	0.1	<0.1	<0.1	0.8	<0.1	0.5
· · · · · · · · · · · · · · · · · · ·	mg/kg	5	4,000	1,000	10	<5	-	-	-	<5	-		-	-	<5	-	-	-	<5	-	-
Nickel	mg/kg	5	3,000	600	60	98	90	110	56	34	18	13	51	94	40	43	51	37	45	<5	73
Silver Selenium	mg/kg mg/kg	2	720 200	180 50	10 10	<2 <2	-	-	-	<2 <2	-	-	-	-	<2 <2	-	-	-	<2 <2	-	-
Tin	mg/kg	10	900	500	50	<10	-	-	-	<10	-	-	-	-	<10	-	-	-	<10	-	-
Zinc	mg/kg	5	50,000	14,000	200	120	50	120	110	47	53	38	160	90	71	88	52	47	110	8.6	400
BTEX																					
Benzene	mg/kg	0.1	50	5	1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene Ethylbenzene	mg/kg mg/kg	0.1	1,000 1,080	100 100	3	<0.1 <0.1															
Xylene Total	mg/kg	0.3	1,800	180	14	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene (VOC)	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg	0.1	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Total Petroleum Hydrocarbons	mg/kg	0.2	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
· · · · · · · · · · · · · · · · · · ·	mg/kg	20	1,000	650	65	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
C10 - C14	mg/kg	20	-	-	-	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
C15 - C28	mg/kg	50	-	-	-	<50	<50	<50	<50	76	140	130	85	58	<50	<50	210	160	<50	51	<50
C29 - C36 C10 - C36 (Sum of total)	mg/kg mg/kg	50 50	10,000	5,000	1,000	91 91	<50 <50	<50 <50	<50 <50	240 316	200 340	170 300	280 365	140 198	<50 <50	59 59	450 660	520 680	<50 <50	<50 51	<50 <50
Total Recoverable Hydrocarbons	3, 3		10,000	3,000	1,000	31	130	130	130	510	340	300	303	150	130	33	000	000	130	52	130
- III	mg/kg	20	-	-	-	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
F1 (C6 - C10) less BTEX	mg/kg	20	-	-	-	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20	<20
F2 (C10 - C16) F2 C10 - C16 (minus Naphthalene)	mg/kg mg/kg	50 50	-	-	-	<50 <50															
F3 (C16 - C34)	mg/kg	100	-	-	-	120	<100	<100	<100	250	300	260	300	180	<100	<100	530	520	<100	<100	<100
F4 (C34 - C40)	mg/kg	100	-	-	-	<100	<100	<100	<100	140	<100	<100	220	<100	<100	<100	370	430	<100	<100	<100
C10 - C40 (Sum of total)	mg/kg	100	-	-	-	120	<100	<100	<100	390	300	260	520	180	<100	<100	900	950	<100	<100	<100
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	_	_	-	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
	mg/kg	0.5	-	-	-	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg mg/kg	0.5 0.5		-	-	<0.5 <0.5															
	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg	0.5	20	2	0.08	<0.5 <0.5															
	mg/kg mg/kg	0.5		-	-	<0.5	<0.5	<0.5	<0.5 <0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
- · · · ·	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
- 	mg/kg mg/kg	0.5	-	-	-	<0.5 <0.5															
	mg/kg	0.5	-		-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
-	mg/kg	0.5	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
	mg/kg mg/kg	0.5 0.5	200	- 40	- 20	<0.5 <0.5															
Halogenated Benzenes	···o/ '\o	J.J	200	40	20	\U.J	\0.3	\U.J													
<u> </u>	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
PCBs																					
-	mg/kg	0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
	mg/kg mg/kg	0.1	-	-	-	<0.1 <0.1	-	-	-	<0.1 <0.1	-	-	-	-	<0.1	-	-	-	<0.1 <0.1	-	-
	mg/kg	0.1		-	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1242										- '											-1

754-MELEN215878

TABLE 2 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station

Analytical Results - Stockpiles Preliminary Classification

					Field ID	SP2_01	SP2_02	SP2_03	SP3_01	SP5_01	SP5_02	SP5_03	SP8_01	SP8_02	SP9_01	SP9_02	SP9_03	SP9_04	SP10_01	SP10_02	SP10_03
					Stockpile Date	Stockpile 2 8/03/2023	Stockpile 2 8/03/2023	Stockpile 2 8/03/2023	Stockpile 3 8/03/2023	Stockpile 5 8/03/2023	Stockpile 5 8/03/2023	Stockpile 5 8/03/2023	Stockpile 8 8/03/2023	Stockpile 8 8/03/2023	Stockpile 9 8/03/2023	Stockpile 9 8/03/2023	Stockpile 9 8/03/2023	Stockpile 9 8/03/2023	Stockpile 10 8/03/2023	Stockpile 10 8/03/2023	Stockpile 10 8/03/2023
				ı	ab Report Number	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775	971775
				EPA Tas IB105				0.11.0													
			EPA Tas IB105	Low Level	EPA Tas IB105																
			Contaminated Soil	Contaminated Soil	Fill material																
			(Level 3)	(Level 2)	(Level 1)																
	Unit	EQL		(Level 2)				1	T		1	1	т	T	T	т	T	ı			
Arochlor 1254	mg/kg	0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1260	mg/kg	0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
PCBs (Sum of total)	mg/kg	0.1	50	20	2	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Phenois	ma/ka					10.4				10.4					10.4				10.4		
3/4-Methylphenol (m/p-cresol) 2,4-Dinitrophenol	mg/kg	0.4	-	-	-	<0.4	-	-	-	<0.4	-	-	-	-	<0.4	-	-	-	<0.4	-	-
2,4,5-Trichlorophenol	mg/kg	5 1	-	-	-	<5 <1	-	-	-	<5 <1	-	-	-	-	<5 <1	-	-	-	<5 <1	-	-
2,4,6-Trichlorophenol	mg/kg mg/kg	1	-	-	-	<1		-	-	<1	-	-	-	-	<1	-	-	-	<1	-	-
2,4-Dichlorophenol	mg/kg	0.5				<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2,4-Dimethylphenol	mg/kg	0.5	_		-	<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2,6-Dichlorophenol	mg/kg	0.5	_	-	-	<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2-Chlorophenol	mg/kg	0.5	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2-Methylphenol	mg/kg	0.2	-	-	-	<0.2	-	-	-	<0.2	-	-	-	-	<0.2	-	-	-	<0.2	-	-
2-Nitrophenol	mg/kg	1	-	-	-	<1	-	-	-	<1	-	-	-	-	<1	-	-	-	<1	-	-
4,6-Dinitro-2-methylphenol	mg/kg	5	-	-	-	<5	-	-	-	<5	-	-	-	-	<5	-	-	-	<5	-	-
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	20	-	-	-	<20	-	-	-	<20	-	-	-	-	<20	-	-	-	<20	-	-
4-Nitrophenol	mg/kg	5	-	-	-	<5	-	-	-	<5	-	-	-	-	<5	-	-	-	<5	-	-
4-chloro-3-methylphenol	mg/kg	1	-	-	-	<1	-	-	-	<1	-	-	-	-	<1	-	-	-	<1	-	-
Cresol Total	mg/kg	0.5	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
Pentachlorophenol	mg/kg	1	-	-	-	<1	-	-	-	<1	-	-	-	-	<1	-	-	-	<1	-	-
Phenol	mg/kg	0.5	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
Tetrachlorophenols	mg/kg	10	-	-	-	<10	-	-	-	<10	-	-	-	-	<10	-	-	-	<10	-	-
Phenols (Total Halogenated)	mg/kg	1	-	-	-	<1	-	-	-	<1	-	-	-	-	<1	-	-	-	<1	-	-
Phenols (Total Non Halogenated)	mg/kg	20	2,000	500	25	<20	-	-	-	<20	-	-	-	-	<20	-	-	-	<20	-	-
OCP CONTRACTOR OF THE PROPERTY	,																				\vdash
Organochlorine pesticides EPAVic Other organochlorine pesticides	mg/kg	0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
EPAVic	mg/kg	0.1				<0.1	_	_	_	<0.1	_	_	_	_	<0.1	_	_	_	<0.1	_	_
Herbicides	1116/116	0.1		-	-	V0.1		_		V0.1					V0.1	1	1	_	V0.1	_	
Dinoseb	mg/kg	20	_		_	<20	_	_	_	<20	-	-	_	-	<20	-	-	-	<20	-	-
Organochlorine Pesticides	0, 0					120				120			1	1	1	 	1	<u> </u>	120		
4,4-DDE	mg/kg	0.05	_		-	<0.05	_	_	_	<0.05	-	-	_	_	<0.05	-	_	_	<0.05	-	_
a-BHC	mg/kg	0.05	_	-	-	<0.05	-	-	-	< 0.05	-	-	-	-	<0.05	-	-	-	< 0.05	-	-
Aldrin	mg/kg	0.05	-	-	-	<0.05	_	-	-	< 0.05	-	-	-	-	<0.05	-	-	-	< 0.05	-	-
Aldrin + Dieldrin	mg/kg	0.05	50	20	2	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
b-BHC	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	< 0.05	-	-
chlordane	mg/kg	0.1	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-	<0.1	-	-	-	<0.1	-	-
d-BHC	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
DDD	mg/kg	0.05	-	-	-	<0.05	-	-	-	< 0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
DDT	mg/kg	0.05	-	-	-	<0.05	-	-	-	< 0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
DDT+DDE+DDD	mg/kg	0.05	1,000	200	2	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Dieldrin	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endrin aldehyde	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endrin ketone	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	< 0.05	-	-
Endosulfan I	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endosulfan II Endosulfan sulphate	mg/kg		-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endosultan sulphate Endrin	mg/kg mg/kg	0.05	-	-	-	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-	-	-	<0.05 <0.05	-	-	-	<0.05 <0.05	-	-
g-BHC (Lindane)	mg/kg	0.05	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Heptachlor	mg/kg	0.05			-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	
Heptachlor epoxide	mg/kg	0.05			-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Methoxychlor	mg/kg	0.05	_	-	-	<0.05	-	-	-	<0.05	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Toxaphene	mg/kg	0.5	_	-	-	<0.5	-	-	-	<0.5	-	-	-	-	<0.5	-	-	-	<0.5	-	-
- P	370					-5.5				-5.5	<u> </u>		<u> </u>	<u> </u>	-5.5	<u> </u>		<u> </u>	-5.5		

Environmental Standards
EPA Tasmania, 2018, Information Bulletin No. 105 Contaminated Soil (Level 3)

EPA Tasmania, 2018, Information Bulletin No. 105 Low Level Contaminated Soil (Level 2)

EPA Tasmania, 2018, Information Bulletin No. 105 Fill Material (Level 1)

754-MELEN215878 3 of 14

SP8_02

TABLE 3 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station

Analytical Results - Stockpiles (NEPM)

SP2_01

SP2_02

SP2_03

SP3_01

SP5_01

SP5_02

SP5_03

SP8_01

Field ID

							Field ID	SP2_01 Stockpile 2	SP2_02 Stockpile 2	SP2_03 Stockpile 2	SP3_01 Stockpile 3	SP5_01 Stockpile 5	SP5_02 Stockpile 5	SP5_03 Stockpile 5	SP8_01 Stockpile 8	SP8_02
							Stockpile Date	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	Stockpile 8 8/03/2023
							Lab Report Number	971775	971775	971775	971775	971775	971775	971775	971775	971775
	Unit	EQL	NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil	NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0m - 1m)	NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind	NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil	NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil									
Physical Parameters																
Moisture Content (dried @ 103°C)	%	1	-	-	-	-	-	21	22	15	13	11	14	15	7.1	7.2
Metals																
Arsenic	mg/kg	2	3,000	-	160	-	-	<2	2.2	<2	<2	2.3	2.6	<2	2.0	<2
Cadmium	mg/kg	0.4	900	-	-	-	-	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium (III+VI)	mg/kg	5	-	-	-	-	-	130	280	140	87	20	29	17	29	63
Copper	mg/kg	5	240,000	-	90*	-	-	50	170	43	64	17	17	15	19	24
Lead	mg/kg	5	1,500	-	1,800	-	-	0.3	48 6.7	30	130 9.8	50 0.2	380	78	33	18
Mercury Molybdenum	mg/kg mg/kg	0.1 5	730	-	-	-	-	0.3 <5	-	0.2	9.8	0.2 <5	0.4	0.3	<0.1	0.2
Nickel	mg/kg	5	6,000	-	65*		-	98	90	110	56	34	18	13	51	94
Silver	mg/kg	2	-	-	- 03		-	<2	-	-	-	<2	-			-
Selenium	mg/kg	2	10,000	-	-	-	-	<2	-	_	-	<2	-	-	_	_
Tin	mg/kg	10	-	-	-	-	-	<10	-	-	-	<10	-	-	-	-
Zinc	mg/kg	5	400,000	-	190*	-	-	120	50	120	110	47	53	38	160	90
ВТЕХ																
Benzene	mg/kg	0.1	-	3	-	75	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	-	-	-	135	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	-	-	-	165	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene Total	mg/kg	0.3	-	230	-	180	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene (VOC)	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene (o)	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene (m & p)	mg/kg	0.2	-	-	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
Total Petroleum Hydrocarbons																
C6 - C9	mg/kg	20	-	-	-	-	-	<20	<20	<20	<20	<20	<20	<20	<20	<20
C10 - C14	mg/kg	20	-	-	-	-	-	<20	<20	<20	<20	<20	<20	<20	<20	<20
C15 - C28 C29 - C36	mg/kg	50	-	-	-	-	-	<50	<50	<50	<50	76	140	130	85	58
C10 - C36 (Sum of total)	mg/kg mg/kg	50 50	-	-	-	-	-	91 91	<50 <50	<50 <50	<50 <50	240 316	200 340	170 300	280 365	140 198
	1116/116	30	-	-	-		-	31	\30	\30	\30	310	340	300	303	130
Total Recoverable Hydrocarbons F1 (C6 - C10)	mg/kg	20	-	-	-		700	<20	<20	<20	<20	<20	<20	<20	<20	<20
F1 (C6 - C10) less BTEX	mg/kg	20	_	260	-	215	-	<20	<20	<20	<20	<20	<20	<20	<20	<20
F2 (C10 - C16)	mg/kg	50	_	-	-	-	1,000	<50	<50	<50	<50	<50	<50	<50	<50	<50
F2 C10 - C16 (minus Naphthalene)	mg/kg	50	-	-	-	170	-	<50	<50	<50	<50	<50	<50	<50	<50	<50
F3 (C16 - C34)	mg/kg	100	-	-	-	1,700	3,500	120	<100	<100	<100	250	300	260	300	180
F4 (C34 - C40)	mg/kg	100	-	-	-	3,300	10,000	<100	<100	<100	<100	140	<100	<100	220	<100
C10 - C40 (Sum of total)	mg/kg	100	-	-	-	-	-	120	<100	<100	<100	390	300	260	520	180
Polycyclic Aromatic Hydrocarbons																
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	40	-	-	-	-	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	40	-	-	-	-	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	40	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene Acenaphthylene	mg/kg mg/kg	0.5 0.5	-	-	-	-	-	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5	<0.5 <0.5
Anthracene	mg/kg	0.5	-	-	-		-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	mg/kg	0.5	-	-	-	1.4	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.5	-	-	370	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene PAHs (Sum of total)	mg/kg mg/kg	0.5	4,000	-	-	-	-	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5 <0.5	<0.5	<0.5 <0.5	<0.5
· · · · · · · · · · · · · · · · · · ·	IIIR/ KB	0.5	4,000	-	-	-	-	<0.5	<u.5< td=""><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td><td><0.5</td></u.5<>	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Halogenated Benzenes Hexachlorobenzene	mg/kg	0.05	80					<0.0F				~0.0F	-	-		
	1118/ NB	0.05	80	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
PCBs Arochlor 1016	mg/kg	0.1		-	-		_	<0.1	_	_	_	<0.1	_	_	_	_
Arochlor 1221	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
Arochlor 1232	mg/kg	0.1	-	-	-			<0.1	-	-	-	<0.1	-	-	-	-
Arochlor 1242	mg/kg	0.1	-	-	-		-	<0.1	-	-	-	<0.1	-	-	-	-
								~U.I		1 -	1 -	~U.1	1 -		1 -	1

754-MELEN215878

TABLE 3 Marinus Link Pty Ltd

SP5_01

SP5_02

SP5_03

SP8_01

SP8_02

SP3_01

Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station

Analytical Results - Stockpiles (NEPM)

Field ID SP2_01

SP2_02

SP2_03

							Stockpile	Stockpile 2	Stockpile 2	Stockpile 2	Stockpile 3	Stockpile 5	Stockpile 5	Stockpile 5	Stockpile 8	Stockpile 8
							Date	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023
							Lab Report Number	971775	971775	971775	971775	971775	971775	971775	971775	971775
				NEPM 2013 Table						· · · · · · · · · · · · · · · · · · ·	<u> </u>		· · · · · · · · · · · · · · · · · · ·			
			NEPM 2013 Table	1A(3) Comm/Ind D	NEPM 2013 Table	NEPM 2013 Table	NEPM 2013 Table									
			1A(1) HILs	Soil HSL for Vapour	1B(5) Generic EIL -	1B(6) ESLs for	1B(7) Management									
			Comm/Ind D Soil	Intrusion, Sand (0m	Comm/Ind	Comm/Ind, Coarse	Limits Comm / Ind,									
	Unit	EQL	Commy ma B som	1m)	Commymu	Soil	Coarse Soil									
Arochlor 1248		0.1		-				<0.1		1	1	<0.1	1	1	1	
Arochlor 1254	mg/kg mg/kg	0.1	-		-	-	-	<0.1	-	-	-	<0.1 <0.1	-	-	-	-
Arochlor 1260	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
PCBs (Sum of total)	mg/kg	0.1	7	-	-			<0.1	-	-	-	<0.1	-	-	-	-
Phenols	6/6	0.1	,					٧٥.1				10.1				
3/4-Methylphenol (m/p-cresol)	mg/kg	0.4	-	_				<0.4	-	_	_	<0.4	_	_	_	-
2,4-Dinitrophenol	mg/kg	5	-	-	-	-	-	<5	-	-	-	<5	-	-	-	-
2,4,5-Trichlorophenol	mg/kg	1	-	-	-	-		<1	-		-	<1	-	-	-	_
2,4,6-Trichlorophenol	mg/kg	1	-	-	_	_	_	<1	-	_	-	<1	_	-	_	-
2,4-Dichlorophenol	mg/kg	0.5	-	-		-		<0.5	-	-	-	<0.5	-	-	-	-
2,4-Dimethylphenol	mg/kg	0.5	-	-	_	-	_	<0.5	-	-	-	<0.5	-	-	-	-
2,6-Dichlorophenol	mg/kg	0.5	-	-	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-
2-Chlorophenol	mg/kg	0.5	-	-	-	-	_	<0.5	-	-	-	<0.5	-	-	-	-
2-Methylphenol	mg/kg	0.2	-		-	-	-	<0.2	-	-	-	<0.2	-	-	-	-
2-Nitrophenol	mg/kg	1	_	-	_	_	-	<1	-	-	-	<1	-	-	-	-
4,6-Dinitro-2-methylphenol	mg/kg	5	-	-	-	-	_	<5	-	-	-	<5	-	-	-	-
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	20	-	-	-	-	-	<20	-	-	-	<20	-	-	-	-
4-Nitrophenol	mg/kg	5	-	-	-	-	-	<5	-	-	-	<5	-	-	-	-
4-chloro-3-methylphenol	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-	-	-
Cresol Total	mg/kg	0.5	25,000	-	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-
Pentachlorophenol	mg/kg	1	660	-	-	-	-	<1	-	-	-	<1	-	-	-	-
Phenol	mg/kg	0.5	240,000	-	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-
Tetrachlorophenols	mg/kg	10	-	-	-	-	-	<10	-	-	-	<10	-	-	-	-
Phenols (Total Halogenated)	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-	-	-
Phenols (Total Non Halogenated)	mg/kg	20	-	-	-	-	-	<20	-	-	-	<20	-	-	-	-
ОСР																
Organochlorine pesticides EPAVic	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
Other organochlorine pesticides																
EPAVic	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
Herbicides																
Dinoseb	mg/kg	20	-	-	-	-	-	<20	-	-	-	<20	-	-	-	-
Organochlorine Pesticides																
4,4-DDE	mg/kg	0.05	-	-	-	-	-	< 0.05	-	-	-	< 0.05	-	-	-	-
a-BHC	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Aldrin	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Aldrin + Dieldrin	mg/kg	0.05	45	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
b-BHC	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
chlordane	mg/kg	0.1	530	-	-	-	-	<0.1	-	-	-	<0.1	-	-	-	-
d-BHC	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
DDD	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
DDT	mg/kg	0.05	-	-	640	-	-	<0.05	-	-	-	<0.05	-	-	-	-
DDT+DDE+DDD	mg/kg	0.05	3,600	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Dieldrin	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Endrin aldehyde	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Endrin ketone	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Endosulfan I	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Endosulfan II	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Endosulfan sulphate	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Endrin	mg/kg	0.05	100	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
g-BHC (Lindane)	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Heptachlor	mg/kg	0.05	50	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Heptachlor epoxide	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Methoxychlor	mg/kg	0.05	2,500	-	-	-	-	<0.05	-	-	-	<0.05	-	-	-	-
Toxaphene	mg/kg	0.5	160	-	-	-	-	<0.5	-	-	-	<0.5	-	-	-	-

Environmental Standards

NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0m - 1m)

NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind

NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil

NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil
*Calculated using the following parameters: CEC = 5 cmolc/kg dwt, OC = 1%, clay = 10%, pH = 4.4

754-MELEN215878 5 of 14

TABLE 3 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Analytical Results - Stockpiles (NEPM)

	_						
Field ID	SP9_01	SP9_02	SP9_03	SP9_04	SP10_01	SP10_02	SP10_03
Stockpile	Stockpile 9	Stockpile 9	Stockpile 9	Stockpile 9	Stockpile 10	Stockpile 10	Stockpile 10

							Date	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023
							Lab Report Number	971775	971775	971775	971775	971775	971775	971775
				NEPM 2013 Table		NEPM 2013 Table	NEPM 2013 Table							
			NEPM 2013 Table	1A(3) Comm/Ind D	NEPM 2013 Table	1B(6) ESLs for								
			1A(1) HILs	Soil HSL for Vapour	1B(5) Generic EIL -	Comm/Ind, Coarse	1B(7) Management Limits Comm / Ind,							
			Comm/Ind D Soil	Intrusion, Sand (0m -	Comm/Ind	Soil	Coarse Soil							
	Unit	EQL		1m)		3011	Coarse soil							
hysical Parameters														
Moisture Content (dried @ 103°C)	%	1	-	-	-	-	-	16	12	13	22	19	6.0	15
letals														
Arsenic	mg/kg	2	3,000	-	160	-	-	<2	<2	<2	<2	<2	3.3	17
Cadmium	mg/kg	0.4	900	-	-	-	-	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4	<0.4
Chromium (III+VI)	mg/kg	5	-	-	-	-	-	62	67	31	21	84	<5	70
Copper	mg/kg	5	240,000	-	90*	-	-	22	24	18	24	32	<5	85
Lead	mg/kg	5	1,500	-	1,800	-	-	14	29	11	13	41	11	55
Mercury	mg/kg	0.1	730	-	-	-	-	0.1	0.1	<0.1	<0.1	0.8	<0.1	0.5
Molybdenum	mg/kg	5	-	-	-	-	-	<5	-	-	-	<5	-	-
Nickel	mg/kg	5	6,000	-	65*	-	-	40	43	51	37	45	<5	73
Silver	mg/kg	2	-	-	-	-	-	<2	-	-	-	<2	-	-
Selenium	mg/kg	2	10,000	-	-	-	-	<2	-	-	-	<2	-	-
Tin	mg/kg	10	-	-	-	-	-	<10	-	-	-	<10	-	-
Zinc	mg/kg	5	400,000	-	190*	-	-	71	88	52	47	110	8.6	400
TEX														
Benzene	mg/kg	0.1	-	3	-	75	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Toluene	mg/kg	0.1	-	-	-	135	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Ethylbenzene	mg/kg	0.1	-	-	-	165	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene Total	mg/kg	0.3	-	230	-	180	-	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3	<0.3
Naphthalene (VOC)	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Xylene (o)	mg/kg	0.1	-	-	-	-	-	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1	<0.1
Xylene (m & p)	mg/kg	0.2	-	-	-	-	-	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2	<0.2
otal Petroleum Hydrocarbons														
C6 - C9	mg/kg	20	-	-	-	-	-	<20	<20	<20	<20	<20	<20	<20
C10 - C14	mg/kg	20	-	-	-	-	-	<20	<20	<20	<20	<20	<20	<20
C15 - C28	mg/kg	50	-	-	-	-	-	<50	<50	210	160	<50	51	<50
C29 - C36	mg/kg	50	-	-	-	-	-	<50	59	450	520	<50	<50	<50
C10 - C36 (Sum of total)	mg/kg	50	-	-	-	-	-	<50	59	660	680	<50	51	<50
otal Recoverable Hydrocarbons														
F1 (C6 - C10)	mg/kg	20	-	-	-	-	700	<20	<20	<20	<20	<20	<20	<20
F1 (C6 - C10) less BTEX	mg/kg	20	-	260	-	215	-	<20	<20	<20	<20	<20	<20	<20
F2 (C10 - C16)	mg/kg	50	-	-	-	-	1,000	<50	<50	<50	<50	<50	<50	<50
F2 C10 - C16 (minus Naphthalene)	mg/kg	50	-	-	-	170	-	<50	<50	<50	<50	<50	<50	<50
F3 (C16 - C34)	mg/kg	100	-	-	-	1,700	3,500	<100	<100	530	520	<100	<100	<100
F4 (C34 - C40)	mg/kg	100	-	-	-	3,300	10,000	<100	<100	370	430	<100	<100	<100
C10 - C40 (Sum of total)	mg/kg	100	-	-	-	-	-	<100	<100	900	950	<100	<100	<100
olycyclic Aromatic Hydrocarbons														
Benzo(a)pyrene TEQ calc (Half)	mg/kg	0.5	40	-	-	-	-	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	40	-	-	-	-	1.2	1.2	1.2	1.2	1.2	1.2	1.2
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	40	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(b+j)fluoranthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Acenaphthylene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Anthracene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benz(a)anthracene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(a) pyrene	mg/kg	0.5	-	-	-	1.4	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(g,h,i)perylene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Benzo(k)fluoranthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Chrysene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Dibenz(a,h)anthracene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluoranthene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Fluorene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Naphthalene	mg/kg	0.5	-	-	370	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Phenanthrene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
Pyrene	mg/kg	0.5	-	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
PAHs (Sum of total)	mg/kg	0.5	4,000	-	-	-	-	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5	<0.5
alogenated Benzenes														
Hexachlorobenzene	mg/kg	0.05	80	-	-	-	-	< 0.05	-	-	-	< 0.05	-	-
CBs														
Arochlor 1016	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1221	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1232	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1242	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-

754-MELEN215878

TABLE 3 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station

, 0	
Analytical Res	ults - Stockpiles (NEPM)

Field ID SP9_01

SP9_02

SP9_03

SP9_04

SP10_01

SP10_02

SP10_03

							Stockpile	Stockpile 9	Stockpile 9	Stockpile 9	Stockpile 9	Stockpile 10	Stockpile 10	Stockpile 10
							Date	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023	8/03/2023
							Lab Report Number	971775	971775	971775	971775	971775	971775	971775
	1 1			NEPM 2013 Table			- nopont number	312110	572770	372770	572770	572775	312110	
			NEPM 2013 Table	1A(3) Comm/Ind D	NEPM 2013 Table	NEPM 2013 Table	NEPM 2013 Table							ļ
			1A(1) HILs	Soil HSL for Vapour	1B(5) Generic EIL -	1B(6) ESLs for	1B(7) Management							ļ
			* *	Intrusion, Sand (0m	Comm/Ind	Comm/Ind, Coarse	Limits Comm / Ind,							ļ
	l lni+		Committee D 3011	1m)	Committee	Soil	Coarse Soil							ľ
A 1240	Unit	EQL						2.1	ı	I		0.1		
Arochlor 1248	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1254	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Arochlor 1260	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
PCBs (Sum of total)	mg/kg	0.1	7	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Phenols	/													
3/4-Methylphenol (m/p-cresol)	mg/kg	0.4	-	-	-	-	-	<0.4	-	-	-	<0.4	-	-
2,4-Dinitrophenol	mg/kg	5	-	-	-	-	-	<5	-	-	-	<5	-	-
2,4,5-Trichlorophenol	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-
2,4,6-Trichlorophenol	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-
2,4-Dichlorophenol	mg/kg	0.5	-	-	-	-	-	<0.5	-	-	-	<0.5	-	
2,4-Dimethylphenol	mg/kg	0.5	-	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2,6-Dichlorophenol	mg/kg	0.5	-	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2-Chlorophenol	mg/kg	0.5	-	-	-	-	-	<0.5	-	-	-	<0.5	-	-
2-Methylphenol	mg/kg	0.2	-	-	-	-	-	<0.2	-	-	-	<0.2	-	-
2-Nitrophenol	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-
4,6-Dinitro-2-methylphenol	mg/kg	5	-	-	-	-	-	<5	-	-	-	<5	-	
4,6-Dinitro-o-cyclohexyl phenol	mg/kg	20	-	-	-	-	-	<20	-	-	-	<20	-	-
4-Nitrophenol	mg/kg	5	-	-	-	-	-	<5	-	-	-	<5	-	-
4-chloro-3-methylphenol	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-
Cresol Total	mg/kg	0.5	25,000	-	-	-	-	<0.5	-	-	-	<0.5	-	-
Pentachlorophenol	mg/kg	1	660	-	-	-	-	<1	-	-	-	<1	-	-
Phenol	mg/kg	0.5	240,000	•		-	-	<0.5	-	-	-	<0.5	-	-
Tetrachlorophenols	mg/kg	10	-	•		-	-	<10	-	-	-	<10	-	-
Phenols (Total Halogenated)	mg/kg	1	-	-	-	-	-	<1	-	-	-	<1	-	-
Phenols (Total Non Halogenated)	mg/kg	20	-	•	-	-	-	<20	-	-	-	<20	-	-
ОСР														
Organochlorine pesticides EPAVic	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	- 1
Other organochlorine pesticides														
EPAVic	mg/kg	0.1	-	-	-	-	-	<0.1	-	-	-	<0.1	-	-
Herbicides														
Dinoseb	mg/kg	20	-	-	-	-	-	<20	-	-	-	<20	-	-
Organochlorine Pesticides	İ													
4,4-DDE	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
a-BHC	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Aldrin	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Aldrin + Dieldrin	mg/kg	0.05	45	-	-	-	-	<0.05	-	-	-	<0.05	-	-
b-BHC	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
chlordane	mg/kg	0.1	530	-	-	-	-	<0.1	-	-	-	<0.1	-	-
d-BHC	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
DDD	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
DDT	mg/kg	0.05	-	-	640	-	-	<0.05	-	-	-	<0.05	-	-
DDT+DDE+DDD	mg/kg	0.05	3,600	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Dieldrin	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endrin aldehyde	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endrin ketone	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endosulfan I	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endosulfan II	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Endosulfan sulphate	mg/kg	0.05	-	-	_	-	-	<0.05	-	_	_	<0.05	-	_
Endrin	mg/kg	0.05	100	-	_	-	-	<0.05	-	_	_	<0.05	-	-
g-BHC (Lindane)	mg/kg	0.05	-	-	-	-	-	<0.05	-	-	_	<0.05	-	_
Heptachlor	mg/kg	0.05	50	-	-	-	-	<0.05	-	_	_	<0.05	-	-
Heptachlor epoxide	mg/kg	0.05	-	-	-	-	-	<0.05	-	_	-	<0.05	-	-
Methoxychlor	mg/kg	0.05	2,500	-	-	-	-	<0.05	-	-	-	<0.05	-	-
Toxaphene	mg/kg	0.03	160	-	-	-	-	<0.5	-	-	-	<0.5	-	-
<u></u>	3, 0		_500					-5.5	1	<u> </u>	1	-5.5		

Environmental Standards

NEPM 2013 Table 1A(1) HILs Comm/Ind D Soil

NEPM 2013 Table 1A(3) Comm/Ind D Soil HSL for Vapour Intrusion, Sand (0m - 1m)

NEPM 2013 Table 1B(5) Generic EIL - Comm/Ind

NEPM 2013 Table 1B(6) ESLs for Comm/Ind, Coarse Soil

754-MELEN215878 7 of 14

NEPM 2013 Table 1B(7) Management Limits Comm / Ind, Coarse Soil
*Calculated using the following parameters: CEC = 5 cmolc/kg dwt, OC = 1%, clay = 10%, pH = 4.4

TABLE 4 Contaminated Land and Acid Sulfate Soil Impact Assessment Heybridge Converter Station Analytical Results - Surface Water

					Field ID Date Lab Report Number	HEY_SW1 08 Mar 2023 971775	HEY_SW2 08 Mar 2023 971775	
			ANZECC (2000) Recreational water	ANZG (2018) Freshwater 95% toxicant DGVs	Sample Code ANZG (2018) Marine water 95% toxicant DGVs	M23-Ma0033629	M23-Ma0033628	
	Unit	EQL	quality and aesthetics	93% toxicalit bovs	water 33% toxicant DGV3			
1etals								
Arsenic	mg/L	0.001	0.05	-	-	<0.001	0.001	
Cadmium	mg/L	0.0002	0.005	0.0002	0.0055	<0.0002	<0.0002	
Chromium (III+VI)	mg/L	0.001	0.05	-	-	<0.001	<0.001	
Copper Lead	mg/L mg/L	0.001 0.001	0.05	0.0014 0.0034	0.0013 0.0044	0.003 0.001	0.003 <0.001	
Mercury	mg/L	0.0001	0.001	0.0034	0.0044	<0.001	<0.001	
Molybdenum	mg/L	0.005	-	-	-	< 0.005	<0.005	
Nickel	mg/L	0.001	0.1	0.011	0.07	0.002	0.005	
Silver	mg/L	0.005	0.05	0.00005	0.0014	<0.005	<0.005	
Selenium	mg/L	0.001	0.01	0.011	-	<0.001	<0.001	
Tin	mg/L	0.005	-	-	-	<0.005	<0.005	
Zinc	mg/L	0.005	5	0.008	0.015	0.012	0.067	
Benzene	ma/I	0.004	0.01	0.05	0.7	<0.004	ZO 004	
Toluene	mg/L mg/L	0.001 0.001	0.01	0.95	0.7	<0.001 <0.001	<0.001 <0.001	
Ethylbenzene	mg/L	0.001	-	-	-	<0.001	<0.001	
Xylene Total	mg/L	0.003	-	-	-	<0.003	<0.001	
Naphthalene (VOC)	mg/L	0.01	-	-	-	<0.01	<0.01	
Xylene (o)	mg/L	0.001	-	0.35	-	<0.001	<0.001	
Xylene (m & p)	mg/L	0.002	-	-	-	<0.002	<0.002	
otal Petroleum Hydrocarbons								
C6 - C9	mg/L	0.02	-	-	-	<0.02	<0.02	
C10 - C14	mg/L	0.05	-	-	-	<0.05	<0.05	
C15 - C28	mg/L	0.1	-	-	-	0.4	<0.1	
C29 - C36 C10 - C36 (Sum of total)	mg/L mg/L	0.1 0.1	-	-	-	<0.1 0.4	<0.1 <0.1	
otal Recoverable Hydrocarbons	IIIg/L	0.1	-	-	-	0.4	<0.1	
F1 (C6 - C10)	mg/L	0.02	-	_	-	<0.02	<0.02	
F1 (C6 - C10) less BTEX	mg/L	0.02	-	-	-	<0.02	<0.02	
F2 (C10 - C16)	mg/L	0.05	-	-	-	<0.05	<0.05	
F2 C10 - C16 (minus Naphthalene)	mg/L	0.05	-	-	-	<0.05	<0.05	
F3 (C16 - C34)	mg/L	0.1	-	-	-	0.4	<0.1	
F4 (C34 - C40)	mg/L	0.1	-	-	-	<0.1	<0.1	
C10 - C40 (Sum of total)	mg/L	0.1	-	-	-	0.4	<0.1	
olycyclic Aromatic Hydrocarbons								
Benzo(b+j)fluoranthene	mg/L	0.001	-	-	-	<0.001	<0.001	
Accepablification	mg/L	0.001	-	-	-	<0.001	<0.001	
Acenaphthylene Anthracene	mg/L mg/L	0.001 0.001	-	-	-	<0.001 <0.001	<0.001 <0.001	
Benz(a)anthracene	mg/L	0.001	-	-	-	<0.001	<0.001	
Benzo(a) pyrene	mg/L	0.001	0.00001	-	-	<0.001	<0.001	
Benzo(g,h,i)perylene	mg/L	0.001	-	-	-	<0.001	<0.001	
Benzo(k)fluoranthene	mg/L	0.001	-	-	-	<0.001	<0.001	
Chrysene	mg/L	0.001	-	-	-	<0.001	<0.001	
Dibenz(a,h)anthracene	mg/L	0.001	-	-	-	<0.001	<0.001	
Fluoranthene	mg/L	0.001	-	-	-	<0.001	<0.001	
Fluorene	mg/L	0.001	-	-	-	<0.001	<0.001	
Indeno(1,2,3-c,d)pyrene	mg/L	0.001	-	- 0.045	-	<0.001	<0.001	
Naphthalene	mg/L	0.001	-	0.016	0.07	<0.001	<0.001	
Phenanthrene Pyrene	mg/L mg/L	0.001 0.001	-	-	-	<0.001 <0.001	<0.001 <0.001	
PAHs (Sum of total)	mg/L	0.001	-	-	-	<0.001	<0.001	
lalogenated Benzenes		3.001				10.001	10.001	
Hexachlorobenzene	mg/L	0.0002	-	-	-	<0.0002	<0.0002	
CBs								
Arochlor 1016	mg/L	0.005	-	-	-	<0.005	<0.005	
Arochlor 1221	mg/L	0.005	-	-	-	<0.005	<0.005	
Arochlor 1232	mg/L	0.005	-	-	-	<0.005	<0.005	
Arochlor 1242	mg/L	0.005	-	0.0006	-	<0.005	<0.005	
Arochlor 1248	mg/L	0.005	-	-	-	<0.005	<0.005	
Arochlor 1254	mg/L	0.005	-	0.00003	-	<0.005	<0.005	
Arochlor 1260	mg/L	0.005	-	-	-	<0.005	<0.005	
PCBs (Sum of total)	mg/L	0.005	-	-	-	<0.005	<0.005	
henols 3/4-Methylphenol (m/p-cresol)	1	I					İ	

TABLE 4 Contaminated Land and Acid Sulfate Soil Impact Assessment Heybridge Converter Station Analytical Results - Surface Water

HEY_SW1

HEY_SW2

					Date	08 Mar 2023	08 Mar 2023		
					Lab Report Number	971775	971775		
					Sample Code	M23-Ma0033629	M23-Ma0033628		
	Unit	EQL	ANZECC (2000) Recreational water quality and aesthetics	ANZG (2018) Freshwater 95% toxicant DGVs	ANZG (2018) Marine water 95% toxicant DGVs				
2,4-Dinitrophenol	mg/L	0.03	-	0.045	-	<0.03	< 0.03		
2,4,5-Trichlorophenol	mg/L	0.01	0.001	-	-	<0.01	<0.01		
2,4,6-Trichlorophenol	mg/L	0.01	0.01	0.02	_	<0.01	<0.01		
2,4-Dichlorophenol	mg/L	0.003	-	0.16	-	<0.003	<0.003		
2,4-Dimethylphenol	mg/L	0.003	-	-	-	<0.003	<0.003		
2,6-Dichlorophenol	mg/L	0.003	-	-	-	<0.003	<0.003		
2-Chlorophenol	mg/L	0.003	-	0.49	-	<0.003	<0.003		
2-Methylphenol	mg/L	0.003	-	-	-	<0.003	<0.003		
2-Nitrophenol	mg/L	0.01	-	-	-	<0.01	<0.01		
4,6-Dinitro-2-methylphenol	mg/L	0.03	-	_	-	<0.03	<0.03		
4,6-Dinitro-o-cyclohexyl phenol	mg/L	0.1	-	-	-	<0.1	<0.1		
4-Nitrophenol	mg/L	0.03	-	-	-	<0.03	<0.03		
4-chloro-3-methylphenol	mg/L	0.01	-	-	-	<0.01	<0.01		
Cresol Total	mg/L	0.01	-	-	-	<0.01	<0.01		
Pentachlorophenol	mg/L	0.01	0.01	0.01	0.022	<0.01	<0.01		
Phenol	mg/L	0.003	-	0.32	0.4	<0.003	<0.003		
Tetrachlorophenols	mg/L	0.03	_	- 0.52	- 0.4	<0.03	<0.03		
Phenols (Total Halogenated)	mg/L	0.01	-	_	-	<0.01	<0.01		
Phenois (Total Non Halogenated)	mg/L	0.01	-	_		<0.1	<0.1		
	6/ =	U.1				10.1	V0.1		
Organochlorine pesticides EPAVic	ma/l	0.002				<0.002	<0.002		
Other organochlorine pesticides	mg/L	0.002	-	-	-	<0.002	<0.002		
EPAVic	mg/L	0.002	-	-	-	<0.002	<0.002		
erbicides									
Dinoseb	mg/L	0.1	-	-	-	<0.1	<0.1		
rganochlorine Pesticides	İ								
4,4-DDE	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
a-BHC	mg/L	0.0002	-	-		< 0.0002	<0.0002		
Aldrin	mg/L	0.0002	0.001	-		< 0.0002	<0.0002		
Aldrin + Dieldrin	mg/L	0.0002	-	-	-	< 0.0002	<0.0002		
b-BHC	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
chlordane	mg/L	0.002	0.006	0.00008		<0.002	<0.002		
d-BHC	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
DDD	mg/L	0.0002	-	-		<0.0002	<0.0002		
DDT	mg/L	0.0002	0.003	0.00001		<0.0002	<0.0002		
DDT+DDE+DDD	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
Dieldrin	mg/L	0.0002	0.001	-	-	<0.0002	<0.0002		
Endrin aldehyde	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
Endrin ketone	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
Endosulfan I	mg/L	0.0002	-	-		<0.0002	<0.0002		
Endosulfan II	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
Endosulfan sulphate	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
Endrin	mg/L	0.0002	0.001	0.00002	0.000008	<0.0002	<0.0002		
g-BHC (Lindane)	mg/L	0.0002	0.01	0.0002	-	<0.0002	<0.0002		
Heptachlor	mg/L	0.0002	0.003	0.0002	-	<0.0002	<0.0002		
Heptachlor epoxide	mg/L	0.0002	-	0.00009		<0.0002	<0.0002		
Methoxychlor	mg/L	0.0002	-	-	-	<0.0002	<0.0002		
Toxaphene	mg/L	0.005	-	0.0002	-	<0.005	<0.005		

Environmental Standards

ANZECC (2000) Recreational water quality and aesthetics

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality - Freshwater 95% toxicant DGVs

ANZG (2018) Australian and New Zealand Guidelines for Fresh and Marine Water Quality - Marine water 95% toxicant DGVs

TABLE 5a Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Field Duplicates - Acid Sulfate Soils

		Field ID	HEY7_0.5-0.6	QC01		HEY7_0.5-0.6	QC02]	HEY6_0.0-0.3	QC03]	HEY6_0.0-0.3	QC04		HEY3_0.9-1.0	QC05]	HEY3_0.9-1.0	QC06
		Date	08 Mar 2023	08 Mar 2023	RPD	08 Mar 2023	08 Mar 2023	RPD	08 Mar 2023	08 Mar 2023	RPD	08 Mar 2023	08 Mar 2023	RPD	08 Mar 2023	08 Mar 2023	RPD	08 Mar 2023	08 Mar 2023
	Lab R	eport Number	971775	971775	KFD	971775	EM2304527	INFD	971775	971775	INFD	971775	EM2304527	INF D	971775	971775	I NFD	971775	EM2304527
		Matrix Type	Soil	il Soil	Soil	Soil		Soil	Soil		Soil	Soil		Soil	Soil		Soil	Soil	
	Unit	EQL																	
CRS																			
CRS Suite - Net Acidity - NASSG																			
(Including ANC)	MOL H+/T	10	-	-	-	-	-	-	-	-	-	-	-	-	<10	<10	0	<10	-
CRS Suite Net Acidity - NASSG																			
(Including ANC)	% S	0.02	-	-	-	-	-	-	-	-	-	-	-	-	<0.02	<0.02	0	<0.02	-
Particle Size	Ì																		
<2mm Fraction	G	0.005	-	-	-	-	-	-	-	-	-	-	-	-	140	140	0	140	-
>2mm Fraction	G	0.005	-	-	-	-	-	-	-	-	-	-	-	-	18	31	53	18	-
Inorganics																			
Extraneous Material	%	0.1	-	-	-	-	-	-	-	-	-	-	-	-	11	18	48	11	-
Analysed Material	%	0.1	-	-	-	-	-	-	-	-	-	-	-	-	89	82	8	89	-
SPOCAS																			
Reaction Rate	-	0	3.0	3.0	0	3.0	3	0	3.0	4.0	29	3.0	2	40	-	-	-	-	-
Field pH of Peroxide extract	pH Unit	0.1	3.0	3.1	3	3.0	2.8	7	4.0	4.3	7	4.0	4.5	12	-	-	-	-	-
pH (F)	pH Unit	0.1	6.1	5.4	12	6.1	5.5	10	6.5	6.5	0	6.5	6.2	5	-	-	-	-	-
ANC Fineness Factor	-	0.5	-	-	-	-	-	-	-	-	-	-	-	-	1.5	1.5	0	1.5	1.5
Chromium Reducible Sulfur	%S	0.005	-	-	-	-	-	-	-	-	-	-	-	-	< 0.005	0.005	0	<0.005	0.009
Chromium Reducible Sulphur	mole H+/t	3	-	-	-	-	-	-	-	-	-	-	-	-	<3	3.3	10	<3	<10
HCl Extractable Sulfur Correction																			
Factor	FACTOR	1 1	-	-	-	-	-	-	-	-	-	-	-	-	2.0	2.0	0	2.0	-
pH (KCl)	-	0.1	-	-	-	-	-	-	-	-	-	-	-	-	5.3	5.3	0	5.3	6.2
sulfidic - Titratable Actual Acidity	%S	0.003	-	-	-	-	-	-	-	-	-	-	-	-	0.008	0.007	13	0.008	<0.02
Titratable Actual Acidity	mole H+/t	2	-	-	-	-	-	-	-	-	-	-	-	-	4.8	4.5	6	4.8	5

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 50 (1 - 10 x EQL); 30 (10 - 10 x EQL); 30 (> 10 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Field Duplicates - Acid Sulfate Soils

		watrix rype	
	Unit	EQL	
CRS		İ	
CRS Suite - Net Acidity - NASSG			
(Including ANC)	MOL H+/T	10	-
CRS Suite Net Acidity - NASSG			
(Including ANC)	% S	0.02	-
Particle Size			
<2mm Fraction	G	0.005	-
>2mm Fraction	G	0.005	-
Inorganics			
Extraneous Material	%	0.1	-
Analysed Material	%	0.1	-
SPOCAS			
Reaction Rate	-	0	-
Field pH of Peroxide extract	pH Unit	0.1	-
pH (F)	pH Unit	0.1	-
ANC Fineness Factor	-	0.5	0
Chromium Reducible Sulfur	%S	0.005	57
Chromium Reducible Sulphur	mole H+/t	3	0
HCl Extractable Sulfur Correction			
Factor	FACTOR	1	-
pH (KCI)	-	0.1	16
sulfidic - Titratable Actual Acidity	%S	0.003	0
Titratable Actual Acidity	mole H+/t	2	4

^{*}RPDs have only been considered where a concentration is greater the
**Elevated RPDs are highlighted as per QAQC Profile settings (Accepta
***Interlab Duplicates are matched on a per compound basis as meth

TABLE 5b Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Field Duplicates - Surface Water

		Field ID Date Lab Report Number Matrix Type	HEY_SW1 08 Mar 2023 971775 Water	QC09 08 Mar 2023 971775 Water	RPD	HEY_SW1 08 Mar 2023 971775 Water	QC10 08 Mar 2023 EM2304527 Water	RPD
	Unit	EQL			•	-	<u> </u>	
ons Cyanide Total	mg/L	0.005	<0.005	<0.005	0	<0.005	-	
Fluoride	mg/L	0.1	<0.5	<0.5	0	<0.5	<0.1	0
Metals Arsenic	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.001	0
Cadmium Chromium (III+VI)	mg/L mg/L	0.0001 0.001	<0.0002 <0.001	<0.0002 0.001	0	<0.0002 <0.001	<0.0001 0.001	0
Copper	mg/L	0.001	0.003	0.001	29	0.003	0.001	29
Lead Mercury	mg/L mg/L	0.001 0.0001	0.001 <0.0001	0.002 <0.0001	67 0	0.001 <0.0001	0.002 <0.0001	67 0
Molybdenum	mg/L	0.005	<0.005	<0.005	0	<0.005	-	-
Nickel Silver	mg/L mg/L	0.001 0.001	0.002 <0.005	0.002 <0.005	0	0.002 <0.005	0.002 <0.001	0
Selenium	mg/L	0.001	<0.001	<0.001	0	<0.001	-	-
Tin Zinc	mg/L mg/L	0.001 0.005	<0.005 0.012	<0.005 0.011	9	<0.005 0.012	<0.001 0.009	0 29
BTEX	/1		.0.004	.0.004		.0.004	.0.004	
Benzene Toluene	mg/L mg/L	0.001 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.001 <0.002	0
Ethylbenzene	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.002	0
Xylene Total Naphthalene (VOC)	mg/L mg/L	0.002 0.005	<0.003 <0.01	<0.003 <0.01	0	<0.003 <0.01	<0.002 <0.005	0
Total BTEX	mg/L	0.001	-	-	-	-	<0.001	-
Xylene (o) Xylene (m & p)	mg/L mg/L	0.001 0.002	<0.001 <0.002	<0.001 <0.002	0	<0.001 <0.002	<0.002 <0.002	0
otal Petroleum Hydrocarbons C6 - C9	ma/I	0.03	<0.02	-0.02		-0.02	20.00	
C10 - C14	mg/L mg/L	0.02 0.05	<0.02 <0.05	<0.02 <0.05	0	<0.02 <0.05	<0.02 <0.05	0
C15 - C28	mg/L	0.1	0.4	0.4	0	0.4	0.45	12
C29 - C36 C10 - C36 (Sum of total)	mg/L mg/L	0.05 0.05	<0.1 0.4	<0.1 0.4	0	<0.1 0.4	<0.05 0.45	0 12
otal Recoverable Hydrocarbons F1 (C6 - C10)	mg/L	0.02	<0.02	<0.02	0	<0.02	<0.02	0
F1 (C6 - C10) less BTEX	mg/L	0.02	<0.02	<0.02	0	<0.02	<0.02	0
F2 (C10 - C16) F2 C10 - C16 (minus Naphthalene)	mg/L mg/L	0.05 0.05	<0.05 <0.05	<0.05 <0.05	0	<0.05 <0.05	<0.1 <0.1	0
F3 (C16 - C34)	mg/L	0.03	0.4	0.4	0	0.4	0.43	7
F4 (C34 - C40) C10 - C40 (Sum of total)	mg/L mg/L	0.1	<0.1 0.4	<0.1 0.4	0	<0.1 0.4	<0.1 0.43	7
Polycyclic Aromatic Hydrocarbons		0.1	0.4	0.4		0.4	0.43	
Benzo(a)pyrene TEQ calc (Zero) Benzo(b+j)fluoranthene	mg/L mg/L	0.0005 0.001	<0.001	<0.001	- 0	<0.001	<0.0005 <0.0010	- 0
Acenaphthene	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.0010	0
Acenaphthylene Anthracene	mg/L mg/L	0.001 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.0010 <0.0010	0
Benz(a)anthracene	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.0010	0
Benzo(a) pyrene Benzo(g,h,i)perylene	mg/L mg/L	0.0005 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.0005 <0.0010	0
Benzo(k)fluoranthene	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.0010	0
Chrysene Dibenz(a,h)anthracene	mg/L mg/L	0.001 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.0010 <0.0010	0
Fluoranthene	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.0010	0
Fluorene Indeno(1,2,3-c,d)pyrene	mg/L mg/L	0.001 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.0010 <0.0010	0
Naphthalene	mg/L	0.001	<0.001	<0.001	0	<0.001	<0.0010	0
Phenanthrene Pyrene	mg/L mg/L	0.001 0.001	<0.001 <0.001	<0.001 <0.001	0	<0.001 <0.001	<0.0010 <0.0010	0
PAHs (Sum of total)	mg/L	0.0005	<0.001	<0.001	0	<0.001	<0.0005	0
Halogenated Benzenes Hexachlorobenzene	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0005	0
PCBs Arochlor 1016	mg/l	0.005	<0.005	<0.005	0	<0.005	_	_
Arochlor 1221	mg/L mg/L	0.005	<0.005	<0.005	0	<0.005 <0.005	-	
Arochlor 1232 Arochlor 1242	mg/L mg/L	0.005 0.005	<0.005 <0.005	<0.005 <0.005	0	<0.005 <0.005	-	-
Arochlor 1248	mg/L	0.005	<0.005	<0.005	0	<0.005	-	-
Arochlor 1254 Arochlor 1260	mg/L mg/L	0.005 0.005	<0.005 <0.005	<0.005 <0.005	0	<0.005 <0.005	-	-
PCBs (Sum of total)	mg/L	0.001	<0.005	<0.005	0	<0.005	<0.001	0
henols 3/4-Methylphenol (m/p-cresol)	mg/L	0.002	<0.006	<0.006	0	<0.006	<0.0020	0
2,4-Dinitrophenol	mg/L	0.03	<0.03	<0.03	0	<0.03	-	-
2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	mg/L mg/L	0.001 0.001	<0.01 <0.01	<0.01 <0.01	0	<0.01 <0.01	<0.0010 <0.0010	0
2,4-Dichlorophenol	mg/L	0.001	<0.003	<0.003	0	<0.003	<0.0010	0
2,4-Dimethylphenol 2,6-Dichlorophenol	mg/L mg/L	0.001 0.001	<0.003 <0.003	<0.003 <0.003	0	<0.003 <0.003	<0.0010 <0.0010	0
2-Chlorophenol	mg/L	0.001	<0.003	<0.003	0	<0.003	<0.0010	0
2-Methylphenol 2-Nitrophenol	mg/L mg/L	0.001 0.001	<0.003 <0.01	<0.003 <0.01	0	<0.003 <0.01	<0.0010 <0.0010	0
4,6-Dinitro-2-methylphenol	mg/L	0.03	<0.03	<0.03	0	<0.03	-	-
4,6-Dinitro-o-cyclohexyl phenol 4-Nitrophenol	mg/L mg/L	0.1	<0.1 <0.03	<0.1 <0.03	0	<0.1 <0.03	-	
4-chloro-3-methylphenol	mg/L	0.001	<0.01	<0.01	0	<0.01	<0.0010	0
Cresol Total Pentachlorophenol	mg/L mg/L	0.01 0.002	<0.01 <0.01	<0.01 <0.01	0	<0.01 <0.01	<0.0020	- 0
Phenol Tetrachlorophenols	mg/L	0.001	<0.003	<0.003	0	<0.003	<0.0010	0
Phenols (Total Halogenated)	mg/L mg/L	0.03 0.01	<0.03 <0.01	<0.03 <0.01	0	<0.03 <0.01	-	
Phenols (Total Non Halogenated) DCP	mg/L	0.1	<0.1	<0.1	0	<0.1	-	-
Organochlorine pesticides EPAVic	mg/L	0.002	<0.002	<0.002	0	<0.002	-	
Other organochlorine pesticides								
EPAVic	mg/L	0.002	< 0.002	<0.002	0	<0.002		

754-MELEN215878 12 of 14

TABLE 5b Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Field Duplicates - Surface Water

		Field ID	HEY_SW1	QC09		HEY_SW1	QC10	
		Date	08 Mar 2023	08 Mar 2023		08 Mar 2023	08 Mar 2023	
		Lab Report Number	971775	971775		971775	EM2304527	
		Matrix Type	Water	Water	RPD	Water	Water	RPD
	Unit	EQL						
Dinoseb	mg/L	0.1	<0.1	<0.1	0	<0.1	-	-
Organochlorine Pesticides								
4,4-DDE	mg/L	0.0002	< 0.0002	<0.0002	0	<0.0002	< 0.0005	0
a-BHC	mg/L	0.0002	<0.0002	< 0.0002	0	< 0.0002	< 0.0005	0
Aldrin	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Aldrin + Dieldrin	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
b-BHC	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
chlordane	mg/L	0.0005	<0.002	<0.002	0	<0.002	< 0.0005	0
Chlordane (cis)	mg/L	0.0005	-	-	-	-	<0.0005	-
Chlordane (trans)	mg/L	0.0005	-	-	-	-	< 0.0005	-
d-BHC	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
DDD	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
DDT	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0020	0
DDT+DDE+DDD	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0005	0
Dieldrin	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Endrin aldehyde	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Endrin ketone	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Endosulfan I	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Endosulfan II	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Endosulfan sulphate	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0005	0
Endrin	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0005	0
g-BHC (Lindane)	mg/L	0.0002	<0.0002	< 0.0002	0	<0.0002	<0.0005	0
Heptachlor	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	< 0.0005	0
Heptachlor epoxide	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0005	0
Methoxychlor	mg/L	0.0002	<0.0002	<0.0002	0	<0.0002	<0.0020	0
Toxaphene	mg/L	0.005	<0.005	< 0.005	0	<0.005	-	-

754-MELEN215878 13 of 14

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

**Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 200 (1 - 10 x EQL); 50 (10 - 20 x EQL); 30 (> 20 x EQL))

***Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

TABLE 6 Contaminated Land and Acid Sulfate Soils Impact Assessment Heybridge Converter Station Field Duplicates - Soil Stockpiles

		Field ID	SP9_01	QC07		SP9_01	QC08	
		Date	08 Mar 2023	08 Mar 2023	RPD	08 Mar 2023	08 Mar 2023	RPD
	Lab Rep	ort Number	971775	971775] ""	971775	EM2304527	
		Matrix Type	Soil	Soil		Soil	Soil	
Metals	Unit	EQL		1	1 1	<u> </u>	I	<u> </u>
	ma/lea	\vdash	-2	-2			45	_
Arsenic	mg/kg	2	<2	<2	0	<2	<5	0
Cadmium	mg/kg	0.4	<0.4	<0.4	0	<0.4	<1	0
Chromium (III+VI)	mg/kg	2	62	120	64	62	50	21
Copper	mg/kg	5	22	42	62	22	18	20
Lead	mg/kg	5	14	20	35	14	14	0
Mercury	mg/kg	0.1	0.1	0.2	67	0.1	0.1	0
Nickel	mg/kg	2	40	78	64	40	29	32
Zinc	mg/kg	5	71	120	51	71	58	20
BTEX								
Benzene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.2	0
Toluene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Ethylbenzene	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Xylene Total	mg/kg	0.3	<0.3	<0.3	0	<0.3	<0.5	0
Naphthalene (VOC)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<1	0
Xylene (o)	mg/kg	0.1	<0.1	<0.1	0	<0.1	<0.5	0
Xylene (m & p)	mg/kg	0.2	<0.2	<0.2	0	<0.2	<0.5	0
Total Petroleum Hydrocarbons								
C6 - C9	mg/kg	10	<20	<20	0	<20	<10	0
C10 - C14	mg/kg	20	<20	<20	0	<20	<50	0
C15 - C28	mg/kg	50	<50	<50	0	<50	<100	0
C29 - C36	mg/kg	50	<50	<50	0	<50	<100	0
C10 - C36 (Sum of total)	mg/kg	50	<50	<50	0	<50	<50	0
Total Recoverable Hydrocarbons		<u> </u>						
F1 (C6 - C10)	mg/kg	10	<20	<20	0	<20	<10	0
F1 (C6 - C10) less BTEX	mg/kg	10	<20	<20	0	<20	<10	0
F2 (C10 - C16)	mg/kg	50	<50	<50	0	<50	<50	0
F2 C10 - C16 (minus Naphthalene)	mg/kg	50	<50	<50	0	<50	<50	0
F3 (C16 - C34)	mg/kg	100	<100	<100	0	<100	<100	0
F4 (C34 - C40)	mg/kg	100	<100	<100	0	<100	<100	0
C10 - C40 (Sum of total)	mg/kg	50	<100	<100	0	<100	<50	0
, ,	1116/116	30	<100	\100	0	\100	\30	0
Polycyclic Aromatic Hydrocarbons	ma/ka	0.5	0.6	0.6	0	0.6	0.6	0
Benzo(a)pyrene TEQ calc (Half) Benzo(a)pyrene TEQ (LOR)	mg/kg	0.5	1.2	1.2	0	1.2	1.2	0
	mg/kg	\vdash						0
Benzo(a)pyrene TEQ calc (Zero)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	
Benzo(b+j)fluoranthene	mg/kg	0.5	<0.5	<0.5		<0.5	<0.5	0
Acenaphthylana	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Acenaphthylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benz(a)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benzo(a) pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benzo(g,h,i)perylene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Benzo(k)fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Chrysene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Dibenz(a,h)anthracene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Fluoranthene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Fluorene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Indeno(1,2,3-c,d)pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Naphthalene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Phenanthrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
Pyrene	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0
PAHs (Sum of total)	mg/kg	0.5	<0.5	<0.5	0	<0.5	<0.5	0

^{*}RPDs have only been considered where a concentration is greater than 1 times the EQL.

754-MELEN215878

^{**}Elevated RPDs are highlighted as per QAQC Profile settings (Acceptable RPDs for each EQL multiplier range are: 50 (1 - 10 x EQL); 30 (10 - 10 x EQL); 30 (> 10 x EQL))

^{***}Interlab Duplicates are matched on a per compound basis as methods vary between laboratories. Any methods in the row header relate to those used in the primary laboratory

APPENDIX D: TEST PIT LOGS

Marinus Link Pty Ltd

client:

principal:

Borehole ID. **HEY1**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

project: Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

	n: No	•	cified					surface elevation: Not Specified	•		rizontal: 1	
	odel: N					4	mial -··'	drilling fluid: Excavator	pit din	ension	s:3.0 m l	long x 1.5 m wide
arıllir	ng info	rmati	on			mate	rial sub			>		
support	2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	soil origin, structure and additional observations
			E		-		CL-CH	FILL: Sandy CLAY : medium to high plasticity, brown grey, with fine grained gravels, with bricks and wood fragments.				FILL
			E		0.5 —		SC	FILL: CLAYEY SAND: coarse grained, dark grey, mottled black and white, with gravels.				NATURAL
			E		1.0-		GC	CLAYEY GRAVEL: dark grey, with sand.	_			
			E		-		CI-CH	Gravelly CLAY: medium to high plasticity, pale grey,	_			Sulfur-like odour
					1.5 - - - -	* /7//)		with quartz pebbles. Test pit HEY1 terminated at 1.5 m				
	 				2.0 —							
					2.5—							
					3.0							
					3.5—							
					- - -							
ND NS HA V	d diatube auger d auger s hand a washb	drilling screw uger ore		C	port mud casing etration	► no res	nil	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter	soil grou material based on A	descript	ion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff
e.g. }	bit sho AD/T blank to TC bit V bit	wn by	suffix	wate	10-0 leve	rangin refusa Oct-12 w el on date er inflow er outflov	g to I ater shown	HP hand penetrometer (kPa) II N standard penetration test (SPT) N* SPT - sample recovered V NC SPT with solid cone V	D dry		H hard Fb friable VL very loose L loose MD medium dense D dense	

Marinus Link Pty Ltd

client:

principal:

project:

Borehole ID. **HEY2**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

										-		· · · ·	D1
- 1		on: Not	-	cified					surface elevation: Not Specified	•		orizontal: I	
\vdash		odel: N/							drilling fluid: Excavator	pit dir	nensior	ıs : 3.0 m l	long x 1.5 m wide
dı	rilli	ng infor	mati	on			mate	rial sub	stance				
method &	support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency/ relative density	hand penetro- meter (kPa)	soil origin, structure and additional observations
CDP_0.10_00.4_LIBRARY (1),GLB F8Y:CDP_0.10_04.2021-09-30_L0g_COP_BOREHOLE: NON CORED_/S4-MELENZ138/8.GFJ_ <gj7awngg-iie>> Z/103/2023 11:17</gj7awngg-iie>				E		1.0 — 1.5 — 2.0 — 2.5 — 3.5 — 3.5 —		CL-CH	FILL: Sandy CLAY: medium to high plasticity, red brown, with gravels. CLAY: dark brown, with root and charcoal fragments. with mudstone boulder Test pit HEY2 terminated at 1.5 m				NATURAL -
MD AI AS H. W RI e. B T V	D S A / R	od diatube auger d auger s hand au washbo rock rol bit show AD/T blank bi TC bit V bit	crewinger re er	ing*	pen wate	10-0 leve	ı	ater shown	HP	1 moist	descrip AS 1726 Indition	tion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd

client:

principal:

project:

Borehole ID. **HEY3**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

po	ositio	n: Not	Spe	cified					surface elevation: Not Specified	•		rizontal: N	
dr	rill mo	odel: N/	Ά						drilling fluid: Excavator	pit dim	ension	s : 3.0 m l	ong x 1.5 m wide
٥	irillir	ng infor	mati	on			mate	rial sub	ostance				
method &	support	1 2 penetration 3	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency/ relative density	hand penetro- meter (kPa)	soil origin, structure and additional observations
Ī				E		-		CL-CH	FILL: Sandy CLAY: medium to high plasticity, dark brown, with brick fragments.				FILL
2//03/2023 11:1/ ——————————————————————————————————				E		0.5—		SP	SAND: medium to coarse grained, grey, with shell fragments.				-
< <drawingfile>></drawingfile>				E		1.0 — - - -			becoming coarse grained, with quartz fragments				
ğ				E		1.5			becoming dark grey Test pit HEY3 terminated at 1.5 m				
CDF_U_1U_0U4_LIBRARY (1),GLB rev.CDF_U_1U_0U4_Z0Z1-U9-3U_L0G_COF_BOREHOLE: NON CORED_764/MELENZ186/8.GFD_						2.0—							
A F V F	AD AS HA V RR	d diatube auger d auger s hand au washbo rock rol bit show AD/T blank b TC bit V bit	rilling crew iger ore ler vn by	ing*	pend	etration		ater shown	B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered WC NC SPT with solid cone WD	material of sed on A ture cond dry moist wet plastic li liquid lim	dition	ion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd

client:

principal:

Borehole ID. **HEY4**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

project: Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

_				bridge								кеа ру:	БІ
- 1.		on: Not	•	cified					surface elevation: Not Specified	•		orizontal: N	
ď	irill m	odel: N/	Ą						drilling fluid: Excavator	pit (dimensior	ns : 3.0 m lo	ong x 1.5 m wide
L	drilli	ng infor	mati	on	,		mate	rial sub	stance				
0 7 7 77	metnod & support	2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture	consistency / relative density	hand penetro- meter (kPa)	soll origin, structure and additional observations
CDF_0_10_00.4_LIBRARY (1).GLB rev.CDF_0_10_00.4 2021-09-30 Log COF BOREHOLE: NON CORED 754-MELENZ16878.GPJ < <drawningfile> 27/03/2023 11:17</drawningfile>				E E				다.	FILL: Sandy CLAY: medium to high plasticity, with boulders, bricks, wood and concrete. SAND: medium to coarse grained, dark grey. with shell fragments Test pit HEY4 terminated at 1.5 m				NATURAL
	method DT AD AS HA W RR * e.g. B T	diatube auger di auger se hand au washbo rock roll bit show AD/T blank bi TC bit V bit	ger ger re er vn by	ng*		etration		l ater shown	samples & field tests B bulk disturbed sample D disturbed sample E environmental sample SS split spoon sample U## undisturbed sample ##mm diameter HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	mater based of moisture of D dry M mois W wet Wp plast		tion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd

client:

principal:

project:

Borehole ID. **HEY5**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

logged by: **JR**

location: Heybridge Converter Station checked by: BT

Contaminated Land and Acid Sulfate Soils Impact Assessment

loc	ation:	He	eybridge	Cor	ivert	er St	tation			check	ed by:	ВТ
pos	sition: I	Not Sp	ecified					surface elevation: Not Specified	angle t	rom ho	rizontal: N/	/A
dril	l model:	: N/A						drilling fluid: Excavator	pit dim	ension	s : 3.0 m lo	ong x 1.5 m wide
dr	illing in	nforma	tion			mate	rial sub	stance				
method &	support 1 2 penetration		samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency / relative density	hand penetro- meter (kPa)	soil origin, structure and additional observations
CDF_0_10_004_LIBRARY (1) GLB rev:CDF_0_10_004 2021-09-30 Log COF BOREHOLE: NON CORED 754-MELEN215878.GPJ < <drawngfile>> 27/03/2023 11:17</drawngfile>			E				CI-CH	FILL: Sandy CLAY: medium to high plasticity, with conrete block, with plastic fragments. becoming yellow, with gravels and conrete chuncks with gravels, possibly fill Test pit HEY5 terminated at 1.5 m				
\perp	auge hand was rock bit s	ube er drillin er screi d auger hbore c roller hown b T uk bit	wing*	pen	etration		ater shown	HP hand penetrometer (kPa) [N standard penetration test (SPT) [N* SPT - sample recovered [Nc SPT with solid cone [Nc	soil grou material de based on A moisture con D dry M moist W wet Wp plastic li Wi liquid lin	descript S 1726 dition	ion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd

client:

principal:

Borehole ID. **HEY6**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

project: Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

p	ositio	n: Not	Spe	cified					surface elevation: Not Specified	angle	from ho	rizontal: N	/A
c	Irill me	odel: N/	Ą						drilling fluid: Excavator	pit din	nension	s : 3.0 m lo	ng x 1.5 m wide
Ĺ	drillir	ng infor	mati	on			mate	rial sub	estance				
0 10 14000	support	2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency/ relative density	hand penetro- meter (kPa)	soil origin, structure and additional observations
CDF_0_10_00.4_LIBRARY (1).GLB rev.CDF_0_10_004 2021-09-30 Log COF BOREHOLE: NON CORED 754-MELENZ15878.GPJ < <drawingfile>> 27/03/2023 11:17</drawingfile>	,							CI	Becoming dark grey with mudstone gravels Pale yellow with rounded quartz gravels and mudstone fragments/boulders Brown with mudstone, limestone gravels, with rounded quartz Test pit HEY6 terminated at 1.5 m				FILL QC03, QC04
	AD AS HA W RR * e.g. B T	diatube auger di auger schand au washbo rock roll bit show AD/T blank bi TC bit V bit	ger ger re er	ng*	pene	etration		ater shown	E environmental sample SS split spoon sample	soil grou material ased on A isture con dry moist wet plastic l liquid lii	descript AS 1726 dition	ion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd

client:

principal:

Borehole ID. **HEY7**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

project: Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

р	ositio	on: Not	Spe	cified					surface elevation: Not Specified	angle	from ho	rizonta	ıl: N/A
d	rill m	odel: N/	A						drilling fluid: Excavator	pit din	nension	ıs : 3.0 ı	m long x 1.5 m wide
	drilli	ng infor	mati	on			mate	rial sub	stance				
8 Podton	support	penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	moisture condition	consistency/ relative density	hand penetr mete (kPa)	soil origin, structure and additional observations
27/03/2023 11:17 - E		3 5 7		E		- - - 0.5 — -		SC	FILL: CLAYEY SAND: medium grained, yellow grey, with gravels and boulders, size up to 300mm.				FILL
< <drawingfile>></drawingfile>				E		1.0 — - - - - - 1.5		CI	FILL: CLAY: medium plasticity, pale grey, with boulders and wood fragments, with gravels.	D			-
CDF_0_10_00.4_LIBRARY (1).GLB rev:CDF_0_10_00.4 2021-09-30 Log COF BOREHOLE: NON CORED 754-MELENZ15878.GPJ						2.0 —			Test pit HEY7 terminated at 1.5 m				
	method DT AD AS HA W RR * e.g. B T	diatube auger d auger s hand au washbo rock rol bit shov AD/T blank bi TC bit V bit	crewinger re er	ing*	pend	etration		l ater shown	HP hand penetrometer (kPa) N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone	material based on a moisture cord of the c	descript AS 1726 Indition	tion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd

client:

principal:

Borehole ID. **HEY8**

sheet: 1 of 1

project no. **754-MELEN215878**

date started: 08 Mar 2023

date completed: 08 Mar 2023

project: Contaminated Land and Acid Sulfate Soils Impact Assessment logged by: JR

_			-ifiad					conference describes N. CO. 15. 1				wizzatali	N/A
1	tion: Not model: N/		citied					surface elevation: Not Specified drilling fluid: Excavator		•		orizontal:	N/A long x 1.5 m wide
\vdash	ling infor		on.			mato	rial sub		-	on and	ICH ISIUH	. J.U III	IONG A 1.5 III WIGE
un		mau	011			mate	ilai Sub				≥	h a m al	
method &	2 penetration	water	samples & field tests	RL (m)	depth (m)	graphic log	soil group symbol	material description SOIL NAME: plasticity or particle characteristics, colour, secondary and minor components	o i i	condition	consistency / relative density	hand penetro- meter (kPa) % % % 4	additional observations
			E		-		SC	FILL: CLAYEY SAND : fine grained, grey, with boulders and mudstone gravels.					FILL
о П			E		0.5			becoming medium grained with rounded pebbles					NATURAL .
E — E			Е		1.0 —			becoming fine grained, mottled orange, with rounded quartz pebbles	_	D			
V			Е		1.5-		CI-CH	Sandy CLAY: medium to high plasticity, yellow, mottled orange, with boulders. Test pit HEY8 terminated at 1.4 m					
INV.COT. TO THE TOTAL TOTAL TO THE TOTAL T					2.0—								
					2.5— - -								
					3.0 —								
					3.5 —								
met DT AD AS HA W RR	thod diatube auger di auger so hand au washbo rock roll	crewi iger re		C	port mud casing etration		nil	samples & field tests B	ma base moistur D dr	ed on A	p symbol descript AS 1726 dition	tion	consistency / relative density VS very soft S soft F firm St stiff VSt very stiff H hard
* e.g. B T V	bit show AD/T blank bi TC bit V bit	•	suffix	wate	10-leve	Oct-12 was on date or inflow er outflow	ater shown	N standard penetration test (SPT) N* SPT - sample recovered Nc SPT with solid cone VS vane shear; peak/remouded (kPa) R refusal HB hammer bouncing	W w	noist ret lastic li quid lin	imit nit		Fb friable VL very loose L loose MD medium dense D dense VD very dense

Marinus Link Pty Ltd Heybridge Converter Station Site and Shore Crossing Contaminated Land and Acid Sulfate Soil Impact Assessment

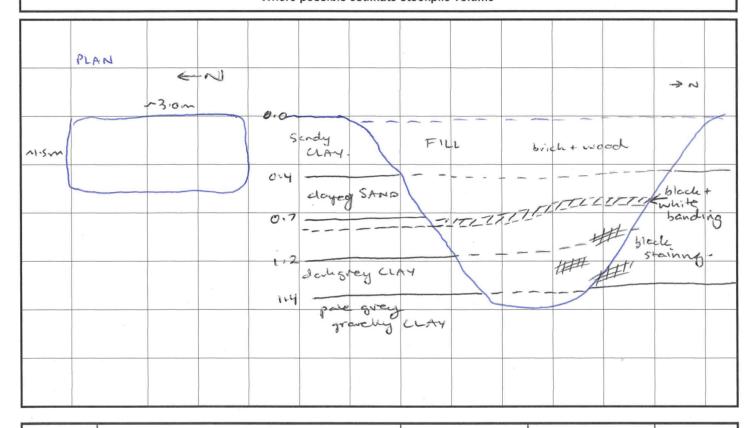
APPENDIX E: FIELD NOTES

Project Name:

Marinus Link - Contaminated Land ASS assessment

Field Personnel (Initials): JR

Project Manager (Initials): BT


PID Serial Number:

Project No. 754-MELEN215878ML

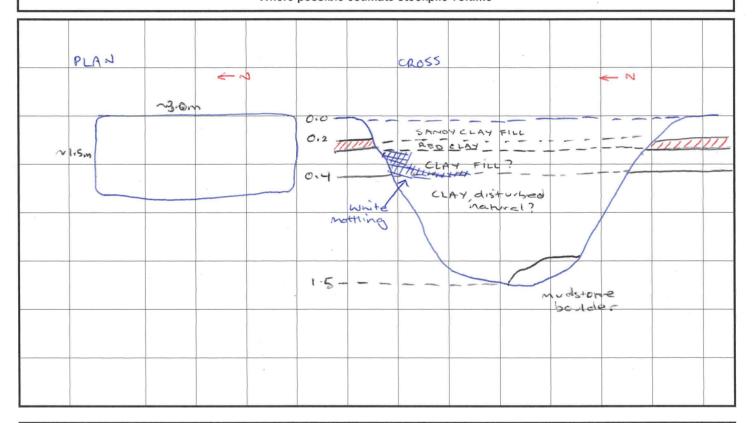
Date: 8.3.23

of l Page

Note: All sketches of excavations and stockpiles must include dimensions and a North arrow. Where possible estimate stockpile volume

	Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
FILL	HEY1_ 0:0-0:2	sandy CLAY, with gravels brown-gray, fg, brick and wood dasts	0.0-0.2		
	HEY1- 0:6-0:7	clayey SAND, ag with grevels, dark grey with black+ white mottling (staining?)	016-017	block+white stain?	
DIST.	HEY1 -	clayey GRAVELS with savet, dark grey with comerted chinles	0:9-1.0	blackmatthy; 1 staining.	·
VAT	HEYI -	gravely CLAY, AM-HP, pole grey with quartz publics + coare sander	1.4-15	sufur odour	
4					

Stockpile and Test Pit Sampling Issue Date: 26/10/2022

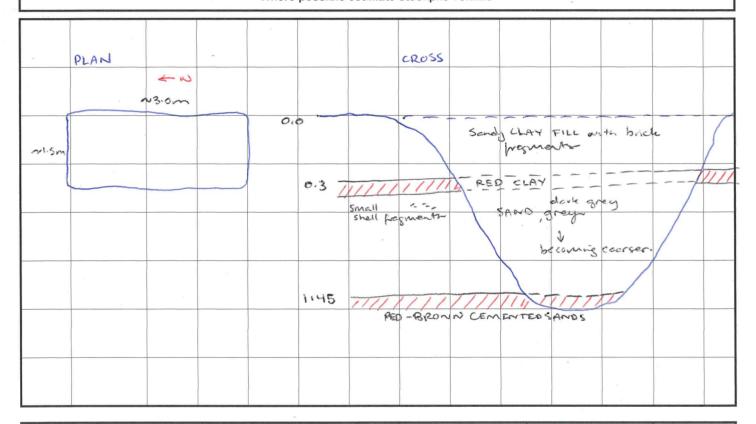


Project Name: Marinus Link - Contaminated Land ASS assessment Project No. 754-MELEN215878ML

Field Personnel (Initials): JR

Date: 5,3-23

Project Manager (Initials): BT PID Serial Number : _____ Page ___ t of ____ t



	Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
FILL	HEY2_0002	Sandy CLAY, with gravels red-brown	0.0-0,2	NIA	NIA
	HEY2-0:6-0.7	CLAY dork-brown with rootlets and charcoal fragments	0.6-0.7	u.	,
		misplaced sample 0.9-1.0		ts.	٠,
DIST NAT?	HEY2-1-4-1.5	CLAY, dans brown win mudstone bolder disturbed natural? moist.	14-15	Na Control	5.9
ē	,		dis .		

Marinus Link - Contaminated Land ASS assessment Project No. 754-MELEN215878ML Project Name: Date: Field Personnel (Initials): 8.3.23 JR of (Project Manager (Initials): BT PID Serial Number: NIA Page

> Note: All sketches of excavations and stockpiles must include dimensions and a North arrow. Where possible estimate stockpile volume

	Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
FILL.	HEY3-	Sondy CLAY with grevels, Fill, rubbish (brick) fragments, down brown	0.0-0.2	NIA	NIA
NAT.	HEY3- 0.4-0.5	SAND, grey with small shell fragments M-Cg-	0.4-0.5	ч	te
QC05 QC06	0.9-1.0	SAND, grey, becoming coarser, quartz fragments, Cg	0.9-1.0	tv	£ (
	HEY3-	SAND, cg, dark grey with oxidused red-brow coloured	1.4-1.5	0	Ĺ
		cemented lager at 1.45mbgs			
2.	4				
-					
		,			

Stockpile and Test Pit Sampling Issue Date: 26/10/2022

Project Name:

Marinus Link - Contaminated Land ASS assessment

Field Personnel (Initials):

Project Manager (Initials): BT

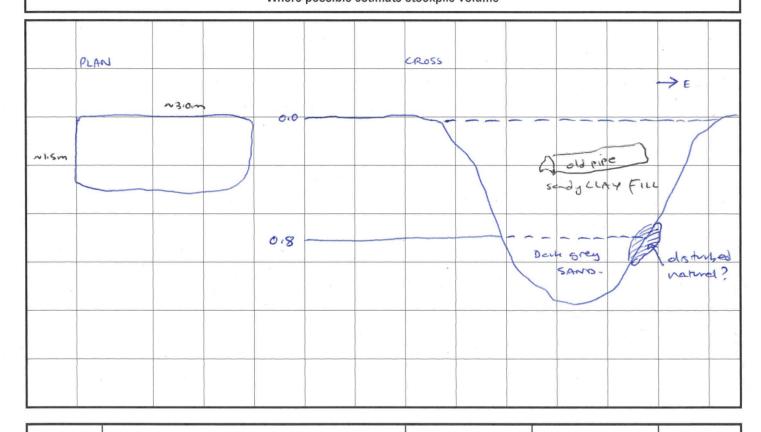
JR

.

PID Serial Number :

NIA

Project No. 754-MELEN215878ML


Date:

8.3.23

t of 1

Page

Note: All sketches of excavations and stockpiles must include dimensions and a North arrow. Where possible estimate stockpile volume

Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
HEY4 -	old Pipe frogmeno, brown	0.0-0.2	NIA	mia
HEY4 -	Sendy CLAY with boilders, rubbish	0.4-0.5	Red-brown	71
HRY4- 0:9-1.0	SAND, dale grey, m-cg, dangrey banding.	0.9-1.0	~ 1A	25
HEY4_	saro, dans green win very small shell fregmenter	1.4-1.5	41×	
(4)				
		3		
2				
-				
-				

FILL

NAT.

Stockpile and Test Pit Sampling Issue Date: 26/10/2022

Project Name:

Marinus Link - Contaminated Land ASS assessment

Field Personnel (Initials):

JR

Project Manager (Initials): BT

PID Serial Number:

754-MELEN215878ML Project No. Date: 8.3.23 Page i__ of __ ?

PLAN.			caoss		
N3:0m R7	0.	0			Rio
wism (II)			A A		
					Concrete
concrete			plastic		
			n/gravel	The second second	
		1.5		more to	

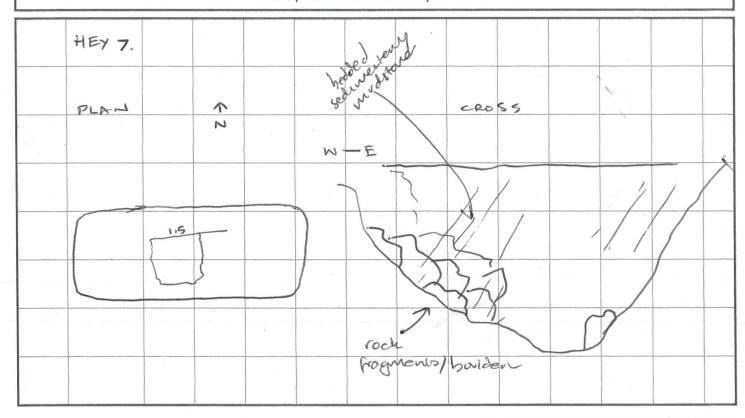
Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
HEY5-	Sandy CLAY, with concrete black, Alo wire plastic fragments	0.0-0.2		
HEY5- 0:4-0:5	Sandy LLAY, yellow with gravelor concrete chunk, brick	0:4-0:5		,
HEY5-	scudy CLAY, yellow with gravels. possible Fill	0.9-1.0		
HEY5-	Soudy CLAY, yellow un grevels	1,4-1-5		
		±		
2.				

HEY 6

STOCKPILE AND EXCAVATION SAMPLING

Project Name: Ma	essment	Project No.	754-MELEN2	215878ML		
Field Personnel (Initials):	JR			Date:	8.3.7	-3
Project Manager (Initials):	BT	PID Serial Number :	NA	Page	1 of	

Note: All sketches of excavations and stockpiles must include dimensions and a North arrow. Where possible estimate stockpile volume


	THEY 6										
		PLAN						CROSS	S		
1 2	NE		2.0								
	.0				F1L 0,1	pales	rey				All
					cuois	11/11 gale	1/1/12			1	1/11/1
7					1.	4 - de	edu bro				

Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
HEY 604-0	3 vich for top 0.1. then palegrey, Mp.	0.1-0.3		
HEY6_0.4-0.	Early (I all) - I come . The activation	0.4-0.5		
HEY6 _0,9-1.0	guartz gravels and mudstave classofb	0.9-1.0 bulden		
HEY 6_14-1-5	Control of the contro	1.4-1.5		
and the second				
N 1	•		À.	
				1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	· · · · · · · · · · · · · · · · · · ·		1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1	

QC03 2C04 HEY7.

Project Name: N	larinus Link - Contam	Project No.	754-MELEN215878ML		
Field Personnel (Initials)	: JR			Date:	8.3.23
Project Manager (Initials	e): BT	PID Serial Number :	AIN	Page) of

Sample ID	CLAY Mp, palegrey with boulders and gravels, dry. 0.9-1.0 no.			PID (ppm)
HEY7_0.002	gelayey SAND with GRAVELS and boulders. yellow- grey, (boulders up to 30cm). Mg.	0.0-0.2	None	None.
HFY20,50.6	11 QCO1 +QCOZ.	0.5-0.6	nove	none
teresoals	joigue y SAND AUTH AVENT A LOCK SALVE	or not	none	hana
HE17-0.9-10	Wood fragments and gravels, dry.	0.9-1.0	none	none.
HEY 7_ 1.4-1.5		1.4-1.5	None	none
	· ,			
			2	

Project Name: M	arinus Link - Contar	ninated Land ASS asse	essment	Project No.	754-MELE	N215878MI	_
Field Personnel (Initials)	: JR			Date:	8.3	.23	
Project Manager (Initials)): <u>BT</u>	PID Serial Number :	NA	Page	of_	1	

Note: All sketches of excavations and stockpiles must include dimensions and a North arrow. Where possible estimate stockpile volume

HEY 8.							
1	PLAN	1			cross		
	9			W-E			
			FILL -				FILL
			1.160m V		77	7	
				73			
			etag	stove duig boulders	1.4.	ubgs	
			+	houlders			

	Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
_	11278,0006.5	elayer SAND, fg, with boulders and grands, mainly mustone frome to, gray.	0.0-0.3.		
۱ .	HEY8_0,4-6,5	clayey s AND, mg, with bolders + gravels.	0.4-6,5		
	HEY8_0.6-07	clayey s AND, mg, with builders + gravels. yellow. clayey SAND, mg with boilders and some rounded pepiloles	0.6-0.7		
	HEY8_0.9-10	grantz pebble: orange matting	0.9-1.0		
	HEY8_1.3-1.4	sandy CLAY yellow with orange mottley.	113-114		
		J	**		
			America de se menor como de se finicio como proper de la como de l		
			i .		
				77	

Stockpile and Test Pit Sampling
Issue Date: 26/10/2022
UNCONTROLLED WHEN PRINTED – SEE ELECTRONIC COPY FOR LATEST VERSION

Surface Water Sampling Form

PROJECT NAME:	Marinus Link – Contaminated land and PASS assessment	PROJECT NUMBER:	754-MELEN215878ML
FIELD PERSONNEL:	JR	DATE:	8.3.23
PROJECT MANAGER:	BT	PAGE:	1 of 1

Date	Time of Day	Title	Location ID	Sample ID	Location Type	Water body Dimensions/Details	SAMPLE COMMENTS ODOUR, COLOUR, SHEEN, NAPL (and its colour), REMEDIATION
4.3.23	16 43	†1286	HEY-SWZAI+	HEY-SW2	Drain ortlet onto beach	large stome water pipe from underroad to beech	No apperent adon clear, with green and are in it
\$ 3.23	17.16	T2000	HEY-SWI	HEY-SW3 to be charged to 1.	Pondry Surface water on site	6 in long 3 in wide with recost	slightly dady brown

Project Name: Marinus Link - Contaminated Land ASS assessment

Project No. 754-MELEN215878ML

Project No. 754-MELEN215878ML

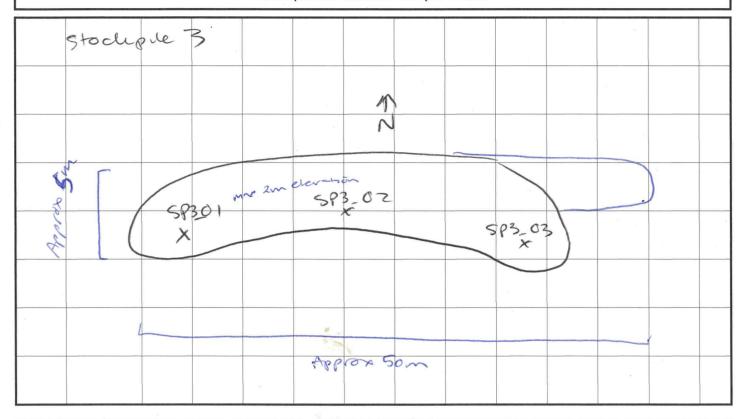
Date: 8,3,2,2

Project Manager (Initials): BT PID Serial Number: NA Page 1 of 1

Note: All sketches of excavations and stockpiles must include dimensions and a North arrow. Where possible estimate stockpile volume

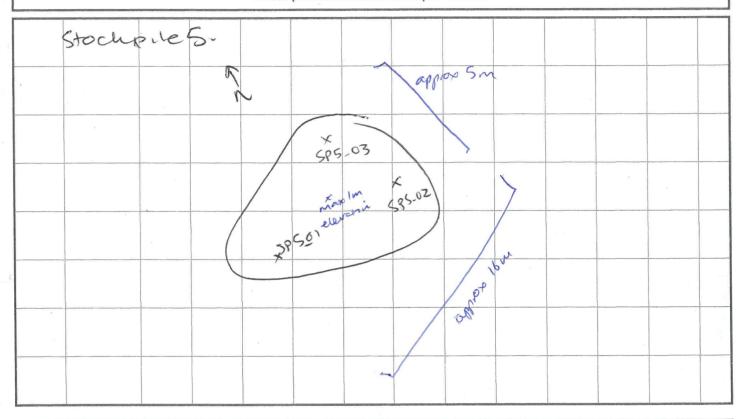
	Ste	clip	le2			-		62				
6 m			may	2.5meh	evetion							1
reide		5P2				SP2_(2		56	2-0-3		
					Appr	0 p 70	pm					
	47							9				

Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
SP2.01	sondy CLAY with gravels +	012-013	organic odou	
5/202	sandy CLAY with gravels and concrete thinks sandy CLAY with gravels and concrete thinks sandy CLAY with gravels and running clay with gravels and running payments	0.2-0.3	organic odow	
59203	rushink-glass pagments	0.2-0.3	organic adow	,
= =			4	
	-			


Stockpile and Test Pit Sampling Issue Date: 26/10/2022

Project Name: Marinus Link - Contaminated Land ASS assessment Project No. 754-MELEN215878ML

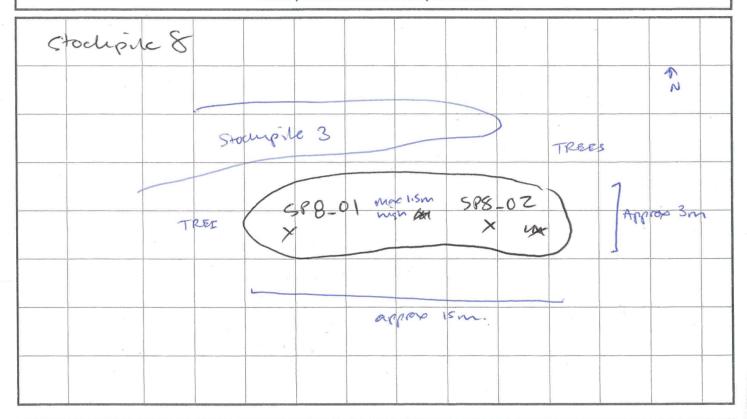
Field Personnel (Initials): JR


Project Manager (Initials): BT PID Serial Number: 🕬 Page of

Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
SP3_01	organic not with brick fragments-		1	
SP3_07 SP3_07 SP3_03	Into ashestus zone - St	opped		
SP3_03	SHELL S.			
*	er en en en en en en en en en en en en en	in .		
		Tys	*	·
	, v			,
		1	*	
		. *		
				2

Project Name: Mar	inus Link - Contam	ninated Land ASS asse	essment	Project No.	754-MELEN215878ML
Field Personnel (Initials):	JR			Date:	8.3.23
Project Manager (Initials):	ВТ	PID Serial Number :	NTA	Page	1 of 1

Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
SP3-01	Sandy CLAY with grands and wood fragments	0.1-0-2		
SP5-02 SP5-03	1)	0.0-0.1		
SP5-03	11	0.0-0.1		
	١.			
	,			
			-	

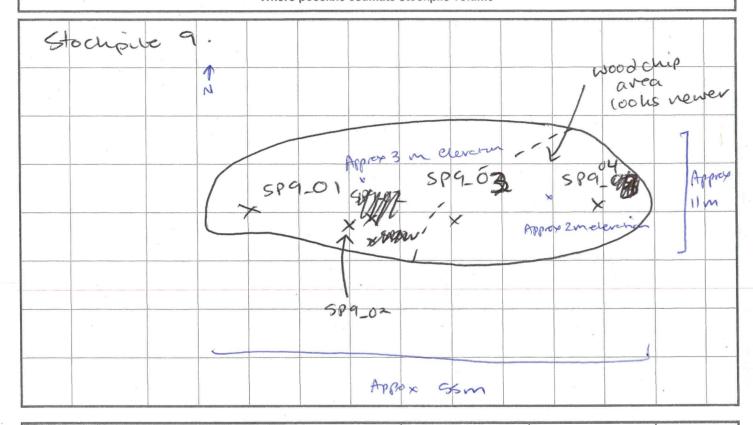

Project Name: Marinus Link - Contaminated Land ASS assessment

Project No. 754-MELEN215878ML

Project No. 754-MELEN215878ML

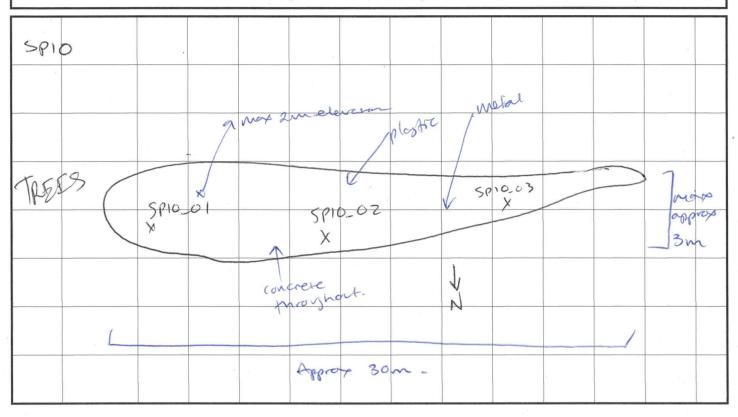
Date: 8-3-23

Project Manager (Initials): BT PID Serial Number: NIA Page 1 of 1


Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
SP8-01	sondy chay with gravels - Forms no rubrish visible sendy chay with gravels	0.2-0.3		
588-02	acody clay with gravely	0.2-0.3		
		1 . 10		
	*			
				1

Project Name:	Marinus Link - Contaminated Land ASS assessment			Project No.	754-MELEN215878ML	
Field Personnel (Initials): JR			Date:	8,3.23	
Project Manager (Initials	s): BT	PID Serial Number :	MA	Page	of	

Note: All sketches of excavations and stockpiles must include dimensions and a North arrow.


Where possible estimate stockpile volume

	Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
QC07 QC08	SP9-01	Sondy CIAY with gravell	0.2-0-3	organe odow white staining	
	589-02	sandy CLAY with gravels and bolder	0.2-0.3		
-2-	5P9-03	sendy chay with gravely Doithioun and lots of borth chips.	0.2-0.3	-45',	
	589.04	sendy CLAY with granely Dointions and lots of bork chips. Sondy CLAY with granely doubtown and lots of born'chips	0.3-0.4		.73
		,			
		le 7 · ·			
			69		

Stockpile and Test Pit Sampling Issue Date: 26/10/2022

Sample ID	Soil Description (soil type, moisture, colour etc)	Depth (m)	Staining/ Odour (descriptive)	PID (ppm)
SP10-01	Sandy day not wood birde and concrete	0,1-0.2	,	
SP10-02	tt .	0.1-0.2		- 1
5710.03	. 11	0.1-0.2		
		1	,	
		,		
			,	,

APPENDIX F: LABORATORY DOCUMENTS

Tetra Tech Coffey Pty Ltd VIC Level 11, 2 Riverside Quay, Southbank VIC 3006

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Bryden Tiddy

Report 971775-S

Project name MARINUS LINK - HYPERBRIDGE

Project ID 754-MELEN215878
Received Date Mar 10, 2023

				1	1	
Client Sample ID			HEY7_0.0-0.2	HEY7_0.5-0.6	QC01	HEY7_0.9-1.0
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033594	M23- Ma0033595	M23- Ma0033596	M23- Ma0033597
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	6.1	6.1	5.4	4.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.8	3.0	3.1	3.0
Reaction Ratings*S05	0	-	3.0	3.0	3.0	3.0

Client Sample ID			HEY7_1.4-1.5	HEY8_0.0-0.3	HEY8_0.4-0.5	HEY8_0.6-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033598	M23- Ma0033599	M23- Ma0033600	M23- Ma0033601
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	-	6.1	5.1	5.3
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	2.8	2.9	2.9
Reaction Ratings*S05	0	-	-	4.0	3.0	3.0
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	4.5	-	-	-
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	42	-	-	=
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	0.068	-	-	-
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	0.025	-	-	-
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	16	-	-	-
Extractable Sulfur						
Sulfur - KCI Extractable	0.005	% S	< 0.005	-	-	-
HCI Extractable Sulfur	0.005	% S	0.009	-	-	-
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	0.019	-	-	-
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	0.014	-	-	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	8.8	-	-	-
HCI Extractable Sulfur Correction Factor	1	factor	2.0	-	-	
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	N/A	-	-	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	N/A	-	-	-
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	N/A	-	-	-
ANC Fineness Factor		factor	1.5	-	-	-

Client Sample ID Sample Matrix Eurofins Sample No. Date Sampled			HEY7_1.4-1.5 Soil M23- Ma0033598 Mar 08, 2023	HEY8_0.0-0.3 Soil M23- Ma0033599 Mar 08, 2023	HEY8_0.4-0.5 Soil M23- Ma0033600 Mar 08, 2023	HEY8_0.6-0.7 Soil M23- Ma0033601 Mar 08, 2023
Test/Reference	LOR	Unit				
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	0.11	-	-	-
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	67	-	-	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	5.0	-	-	-
Extraneous Material						
<2mm Fraction	0.005	g	210	-	-	-
>2mm Fraction	0.005	g	67	-	-	-
Analysed Material	0.1	%	75	-	-	-
Extraneous Material	0.1	%	25	-	-	-
Sample Properties						
% Moisture	1	%	13	-	-	-

Client Sample ID			HEY8_0.9-1.0	HEY8_1.3-1.4	HEY6_0.0-0.3	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033602	M23- Ma0033603	M23- Ma0033604	M23- Ma0033605
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	4.8	-	6.5	6.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	2.9	-	4.0	4.3
Reaction Ratings*S05	0	-	3.0	-	3.0	4.0
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	-	4.4	-	-
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	-	24	-	-
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	-	0.039	-	-
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	-	< 0.005	=	-
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	-	< 3	=	-
Extractable Sulfur						
Sulfur - KCl Extractable	0.005	% S	-	< 0.005	-	-
HCI Extractable Sulfur	0.005	% S	-	0.006	-	-
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	-	0.012	-	-
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	-	0.009	-	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	-	5.7	-	-
HCI Extractable Sulfur Correction Factor	1	factor	-	2.0	-	-
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	-	N/A	-	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	-	N/A	-	-
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	-	N/A	-	-
ANC Fineness Factor		factor	-	1.5	-	-
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	-	0.05	-	-
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	-	30	-	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	-	2.3	=	-

Client Sample ID			HEY8_0.9-1.0	HEY8_1.3-1.4	HEY6_0.0-0.3	QC03
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033602	M23- Ma0033603	M23- Ma0033604	M23- Ma0033605
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Extraneous Material						
<2mm Fraction	0.005	g	-	180	-	-
>2mm Fraction	0.005	g	-	2.1	-	-
Analysed Material	0.1	%	-	99	-	-
Extraneous Material	0.1	%	-	1.1	-	-
Sample Properties						
% Moisture	1	%	-	7.2	-	-

Client Sample ID			HEY6_0.4-0.5	HEY6_0.9-1.0	HEY6_1.4-1.5	HEY5_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033606	M23- Ma0033607	M23- Ma0033608	M23- Ma0033609
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit		, , , , , , , , , , , , , , , , , , , ,	, , , , , , , , ,	,
Acid Sulfate Soils Field pH Test	LOIN	Offic				
pH-F (Field pH test)*	0.1	pH Units	5.5	5.5	-	9.1
pH-FOX (Field pH Peroxide test)*	0.1	pH Units		3.1	-	6.9
Reaction Ratings*S05	0	-	3.0	3.0	_	4.0
Actual Acidity (NLM-3.2)			0.0	0.0		1.0
pH-KCL (NLM-3.1)	0.1	pH Units	-	-	4.8	_
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t		-	11	_
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S		-	0.018	_
Potential Acidity - Chromium Reducible Sulfur	0.000	70 pyo C			0.0.0	
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	-	-	< 0.005	_
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	_	-	< 3	_
Extractable Sulfur		1				
Sulfur - KCl Extractable	0.005	% S	_	-	N/A	_
HCI Extractable Sulfur	0.005	% S	-	-	N/A	_
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	-	-	N/A	_
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	-		N/A	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	-		N/A	-
HCI Extractable Sulfur Correction Factor	1	factor	-	=	2.0	-
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	-	-	N/A	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	-	-	N/A	-
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	-	-	N/A	-
ANC Fineness Factor		factor	-	-	1.5	-
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	-	-	< 0.02	-
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	-	-	11	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	-	-	< 1	-
Extraneous Material						
<2mm Fraction	0.005	g	-	-	200	-
>2mm Fraction	0.005	g	-	-	36	-
Analysed Material	0.1	%	-	-	85	-
Extraneous Material	0.1	%	-	-	15	-
Sample Properties						
% Moisture	1	%	-	-	6.5	-

Client Sample ID			HEY5_0.4-0.5	HEY5_0.9-1.0	HEY5_1.4-1.5	HEY4_0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033610	M23- Ma0033611	M23- Ma0033612	M23- Ma0033613
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	8.0	7.2	6.3	8.3
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	5.8	5.2	4.9	5.3
Reaction Ratings*505	0	-	3.0	3.0	3.0	4.0

Client Sample ID			HEY4_0.4-0.5	HEY4_0.9-1.0	HEY4_1.4-1.5	HEY3_0.0-0.2
Sample Matrix			(A) Soil	Soil	Soil	Soil
dample wattix			M23-	M23-	M23-	M23-
Eurofins Sample No.			Ma0033614	Ma0033615	Ma0033616	Ma0033617
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	7.9	-	-	7.5
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	4.8	-	-	4.8
Reaction Ratings*S05	0	-	4.0	-	-	4.0
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	-	7.1	6.4	-
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	-	< 2	< 2	-
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	-	< 0.003	< 0.003	-
Potential Acidity - Chromium Reducible Sulfur	•					
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	-	< 0.005	< 0.005	-
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	-	< 3	< 3	-
Extractable Sulfur						
Sulfur - KCI Extractable	0.005	% S	-	N/A	N/A	-
HCI Extractable Sulfur	0.005	% S	-	N/A	N/A	-
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	-	N/A	N/A	-
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	-	N/A	N/A	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	-	N/A	N/A	-
HCI Extractable Sulfur Correction Factor	1	factor	-	2.0	2.0	-
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	-	0.17	N/A	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	-	0.05	N/A	-
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	-	33	N/A	-
ANC Fineness Factor		factor	-	1.5	1.5	-
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	-	< 0.02	< 0.02	-
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	-	< 10	< 10	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	-	< 1	< 1	-
Extraneous Material						
<2mm Fraction	0.005	g	-	240	220	-
>2mm Fraction	0.005	g	-	< 0.005	13	-
Analysed Material	0.1	%	-	100	94	-
Extraneous Material	0.1	%	-	< 0.1	5.6	-
Sample Properties						
% Moisture	1	%	-	4.9	6.3	-

Client Sample ID			HEY3 0.9-1.0	HEY3 1.4-1.5	QC05	HEY2 0.0-0.2
Sample Matrix			Soil	Soil	Soil	Soil
Forestina Compate No.			M23-	M23-	M23-	M23-
Eurofins Sample No.			Ma0033618	Ma0033619	Ma0033620	Ma0033621
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test	T					
pH-F (Field pH test)*	0.1	pH Units	-	-	-	5.6
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	-	-	-	4.1
Reaction Ratings*S05	0	-	-	-	-	4.0
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	5.3	6.0	5.3	-
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	4.8	3.2	4.5	-
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	0.008	0.005	0.007	-
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	< 0.005	< 0.005	0.005	-
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	< 3	< 3	3.3	-
Extractable Sulfur		•				
Sulfur - KCl Extractable	0.005	% S	N/A	N/A	N/A	-
HCI Extractable Sulfur	0.005	% S	N/A	N/A	N/A	-
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	N/A	N/A	N/A	-
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	N/A	N/A	N/A	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	N/A	N/A	N/A	-
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	-
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	N/A	N/A	N/A	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	N/A	N/A	N/A	-
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	N/A	N/A	N/A	-
ANC Fineness Factor		factor	1.5	1.5	1.5	-
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	< 0.02	< 0.02	< 0.02	-
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	< 10	< 10	< 10	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	< 1	< 1	< 1	-
Extraneous Material						
<2mm Fraction	0.005	g	140	160	140	-
>2mm Fraction	0.005	g	18	25	31	-
Analysed Material	0.1	%	89	86	82	-
Extraneous Material	0.1	%	11	14	18	-
Sample Properties						
% Moisture	1	%	5.1	8.2	5.5	-

Client Sample ID			HEY2_0.6-0.7	HEY2_1.4-1.5	HEY1_0.0-0.2	HEY1_0.4-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033622	M23- Ma0033623	M23- Ma0033624	M23- Ma0033625
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Acid Sulfate Soils Field pH Test						
pH-F (Field pH test)*	0.1	pH Units	5.6	-	5.8	6.4
pH-FOX (Field pH Peroxide test)*	0.1	pH Units	3.1	-	3.1	4.2
Reaction Ratings*S05	0	-	4.0	-	3.0	4.0

Client Sample ID			HEY2_0.6-0.7	HEY2_1.4-1.5	HEY1_0.0-0.2	HEY1_0.4-0.7
Sample Matrix			Soil	Soil	Soil	Soil
Forma Con a Community No.			M23-	M23-	M23-	M23-
Eurofins Sample No.			Ma0033622	Ma0033623	Ma0033624	Ma0033625
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Actual Acidity (NLM-3.2)		_				
pH-KCL (NLM-3.1)	0.1	pH Units	-	4.6	-	-
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	-	41	-	-
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	-	0.065	-	-
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	-	0.008	-	-
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	-	5.2	-	-
Extractable Sulfur						
Sulfur - KCl Extractable	0.005	% S	-	N/A	-	-
HCI Extractable Sulfur	0.005	% S	-	N/A	-	-
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	-	N/A	-	-
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	-	N/A	-	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	-	N/A	-	-
HCI Extractable Sulfur Correction Factor	1	factor	-	2.0	-	-
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	-	N/A	-	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	-	N/A	-	-
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	-	N/A	-	-
ANC Fineness Factor		factor	-	1.5	-	-
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	-	0.07	-	-
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	-	46	-	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	-	3.4	-	-
Extraneous Material						
<2mm Fraction	0.005	g	-	110	-	-
>2mm Fraction	0.005	g	-	13	-	-
Analysed Material	0.1	%	-	89	-	-
Extraneous Material	0.1	%	-	11	-	-
Sample Properties						
% Moisture	1	%	-	17	-	-

Client Sample ID			HEY1_0.9-1.0	HEY1_1.4-1.5	SP2_01	SP2_02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033626	M23- Ma0033627	M23- Ma0033633	M23- Ma0033634
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	5.9	5.1	-	-
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	7.2	7.8	-	-
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	0.012	0.013	-	-
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	0.007	0.011	-	-
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	4.2	6.9	-	-
Extractable Sulfur		·				
Sulfur - KCl Extractable	0.005	% S	N/A	N/A	-	-
HCI Extractable Sulfur	0.005	% S	N/A	N/A	-	-

	1			1	1	1
Client Sample ID			HEY1_0.9-1.0	HEY1_1.4-1.5	SP2_01	SP2_02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033626	M23- Ma0033627	M23- Ma0033633	M23- Ma0033634
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	N/A	N/A	-	-
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	N/A	N/A	-	-
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	N/A	N/A	-	-
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	-	-
Acid Neutralising Capacity (ANCbt)		-				
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	N/A	N/A	-	-
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	N/A	N/A	-	_
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	N/A	N/A	-	-
ANC Fineness Factor		factor	1.5	1.5	-	_
Net Acidity (Including ANC)						
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	< 0.02	0.02	-	_
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t		15	-	-
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	< 1	1.1	-	-
Extraneous Material		Ing odooon				
<2mm Fraction	0.005	g	120	130	_	_
>2mm Fraction	0.005	g	21	100	-	-
Analysed Material	0.1	%	85	55	-	_
Extraneous Material	0.1	%	15	45	-	_
Sample Properties		,,,				
% Moisture	1	%	20	8.6	21	22
Total Recoverable Hydrocarbons		1 70	20	0.0	1	
TRH C6-C9	20	mg/kg	-	_	< 20	< 20
TRH C10-C14	20	mg/kg	_	_	< 20	< 20
TRH C15-C28	50	mg/kg	_	_	< 50	< 50
TRH C29-C36	50	mg/kg	_	_	91	< 50
TRH C10-C36 (Total)	50	mg/kg	-	_	91	< 50
TRH C6-C10	20	mg/kg	-	_	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	-	-	< 20	< 20
TRH >C10-C16	50	mg/kg	-	-	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	-	-	< 50	< 50
TRH >C16-C34	100	mg/kg	-	-	120	< 100
TRH >C34-C40	100	mg/kg	-	-	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	-	-	120	< 100
ВТЕХ						
Benzene	0.1	mg/kg	-	-	< 0.1	< 0.1
Toluene	0.1	mg/kg	-	-	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	-	-	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	-	-	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	-	-	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	-	-	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	-	-	89	89
Total Recoverable Hydrocarbons - 2013 NEPM Fraction		•				
Naphthalene ^{N02}	0.5	mg/kg	-	-	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons		, 3-3				
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene TEQ (nedium bound) *	0.5	mg/kg	-	-	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	-	_	1.2	1.2
======================================	0.5	mg/kg	-	_	< 0.5	< 0.5

Client Sample ID			UEV4 0040	11574 4 4 4 5	CD0 04	CDO OO
· -			HEY1_0.9-1.0	HEY1_1.4-1.5	SP2_01	SP2_02
Sample Matrix Eurofins Sample No.			Soil M23- Ma0033626	Soil M23- Ma0033627	Soil M23- Ma0033633	Soil M23- Ma0033634
•						
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons		1				
Acenaphthylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	-	-	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Chrysene	0.5	mg/kg	-	-	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	-	-	< 0.5	< 0.5
Fluorene	0.5	mg/kg	-	-	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	-	-	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Pyrene	0.5	mg/kg	-	-	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	-	-	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	-	-	68	59
p-Terphenyl-d14 (surr.)	1	%	-	-	56	115
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	-	-	< 0.1	-
4.4'-DDD	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDE	0.05	mg/kg	-	-	< 0.05	-
4.4'-DDT	0.05	mg/kg	-	-	< 0.05	-
a-HCH	0.05	mg/kg	-	_	< 0.05	-
Aldrin	0.05	mg/kg	_	_	< 0.05	-
b-HCH	0.05	mg/kg	_	_	< 0.05	-
d-HCH	0.05	mg/kg	-	-	< 0.05	-
Dieldrin	0.05	mg/kg	-	_	< 0.05	-
Endosulfan I	0.05	mg/kg	-	_	< 0.05	-
Endosulfan II	0.05	mg/kg	-	_	< 0.05	-
Endosulfan sulphate	0.05	mg/kg	_	_	< 0.05	-
Endrin	0.05	mg/kg	_	_	< 0.05	_
Endrin aldehyde	0.05	mg/kg	-	_	< 0.05	_
Endrin ketone	0.05	mg/kg	-	_	< 0.05	_
g-HCH (Lindane)	0.05	mg/kg	_	_	< 0.05	-
Heptachlor	0.05	mg/kg	_	_	< 0.05	-
Heptachlor epoxide	0.05	mg/kg	_	_	< 0.05	-
Hexachlorobenzene	0.05	mg/kg	-	_	< 0.05	-
Methoxychlor	0.05	mg/kg	-	_	< 0.05	_
Toxaphene	0.05	mg/kg	-	-	< 0.05	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	-	-	< 0.05	-
						-
DDT + DDE + DDD (Total)*	0.05	mg/kg	-	-	< 0.05	-
Vic EPA IWRG 621 OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	80	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	65	

Client Sample ID			HEY1_0.9-1.0	HEY1_1.4-1.5	SP2_01	SP2_02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033626	M23- Ma0033627	M23- Ma0033633	M23- Ma0033634
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit	Mai 00, 2020	Mar 00, 2020	Mai 00, 2020	With 00, 2020
Polychlorinated Biphenyls	LOR	Unit				
	0.4				.0.1	+
Aroclor-1016	0.1	mg/kg	-	-	< 0.1	-
Arcelor 1221	0.1	mg/kg	-	-	< 0.1	-
Arcelor 1232	0.1	mg/kg	-	-	< 0.1	-
Arcelor 1242	0.1	mg/kg	-	-	< 0.1	-
Arcelor 1254	0.1	mg/kg	-	-	< 0.1	-
Arcelor 1254	0.1	mg/kg	-	-	< 0.1	-
Aroclor-1260	0.1	mg/kg	-	-	< 0.1	-
Total PCB*	0.1	mg/kg	-	-	< 0.1	-
Dibutylchlorendate (surr.)	1	%	-	-	80	-
Tetrachloro-m-xylene (surr.)	1	%	-	-	65	-
Phenois (Halogenated)	2.5				0.5	+
2-Chlorophenol	0.5	mg/kg	-	-	< 0.5	-
2.4-Dichlorophenol	0.5	mg/kg	-	-	< 0.5	-
2.4.5-Trichlorophenol	1	mg/kg	-	-	< 1	-
2.4.6-Trichlorophenol	1	mg/kg	-	-	< 1	-
2.6-Dichlorophenol	0.5	mg/kg	-	-	< 0.5	-
4-Chloro-3-methylphenol	1	mg/kg	-	-	< 1	-
Pentachlorophenol	1	mg/kg	-	-	< 1	-
Tetrachlorophenols - Total	10	mg/kg	-	-	< 10	-
Total Halogenated Phenol*	1	mg/kg	-	-	< 1	-
Phenois (non-Halogenated)		T "				
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	-	-	< 20	-
2-Methyl-4.6-dinitrophenol	5	mg/kg	-	-	< 5	-
2-Nitrophenol	1.0	mg/kg	-	-	< 1	-
2.4-Dimethylphenol	0.5	mg/kg	-	-	< 0.5	-
2.4-Dinitrophenol	5	mg/kg	-	-	< 5	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	-	-	< 0.2	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	-	-	< 0.4	-
Total cresols*	0.5	mg/kg	-	-	< 0.5	-
4-Nitrophenol	5	mg/kg	-	-	< 5	-
Dinoseb	20	mg/kg	-	-	< 20	-
Phenol de (ours)	0.5	mg/kg	-	-	< 0.5	-
Phenol-d6 (surr.)	1	%	-	-	82	-
Total Non-Halogenated Phenol*	20	mg/kg	-	-	< 20	-
Cyanida (tatal)		ma == // = ==				+
Cyanide (total)	5	mg/kg	-	-	< 5	-
Fluoride	100	mg/kg	-	-	< 100	-
Heavy Metals		wa a // -				0.0
Arsenic	2	mg/kg	-	-	< 2	2.2
Changing	0.4	mg/kg	-	-	< 0.4	< 0.4
Conner	5	mg/kg	-	-	130	280
Copper	5	mg/kg	-	-	50	170
Lead	5	mg/kg	-	-	110	48
Melyhdanum	0.1	mg/kg	-	-	0.3	6.7
Molybdenum Nietal	5	mg/kg	-	-	< 5	
Nickel Solonium	5	mg/kg	-	-	98	90
Selenium Silver	2 2	mg/kg mg/kg	-	-	< 2 < 2	-

Client Sample ID			HEY1_0.9-1.0	HEY1_1.4-1.5	SP2_01	SP2_02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033626	M23- Ma0033627	M23- Ma0033633	M23- Ma0033634
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Tin	10	mg/kg	-	-	< 10	-
Zinc	5	mg/kg	-	-	120	50

Client Sample ID			SP2_03	SP3_01	SP8_01	SP8_02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033635	M23- Ma0033636	M23- Ma0033637	M23- Ma0033638
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Sample Properties	1 2011					
% Moisture	1	%	15	13	7.1	7.2
Total Recoverable Hydrocarbons	'	70	13	13	7.1	1.2
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	85	58
TRH C29-C36	50	mg/kg	< 50	< 50	280	140
TRH C10-C36 (Total)	50	mg/kg	< 50	< 50	365	198
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	300	180
TRH >C34-C40	100	mg/kg	< 100	< 100	220	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	520	180
BTEX	,	1 5 5				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	96	99	116	52
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	_				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons	l l					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

Client Sample ID			SP2_03	SP3_01	SP8_01	SP8_02
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033635	M23- Ma0033636	M23- Ma0033637	M23- Ma0033638
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons						
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	68	55	61	51
p-Terphenyl-d14 (surr.)	1	%	99	94	87	81
Heavy Metals						
Arsenic	2	mg/kg	< 2	< 2	2.0	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	140	87	29	63
Copper	5	mg/kg	43	64	19	24
Lead	5	mg/kg	30	130	33	18
Mercury	0.1	mg/kg	0.2	9.8	< 0.1	0.2
Nickel	5	mg/kg	110	56	51	94
Zinc	5	mg/kg	120	110	160	90

Client Sample ID			SP9_01	SP9_02	SP9_03	SP9_04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033639	M23- Ma0033640	M23- Ma0033641	M23- Ma0033642
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Sample Properties						
% Moisture	1	%	16	12	13	22
Total Recoverable Hydrocarbons						
TRH C6-C9	20	mg/kg	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	< 50	< 50	210	160
TRH C29-C36	50	mg/kg	< 50	59	450	520
TRH C10-C36 (Total)	50	mg/kg	< 50	59	660	680
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2)N01	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	530	520
TRH >C34-C40	100	mg/kg	< 100	< 100	370	430
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	900	950
BTEX						
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	84	87	83	94

Client Sample ID			SP9_01	SP9_02	SP9_03	SP9_04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033639	M23- Ma0033640	M23- Ma0033641	M23- Ma0033642
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons - 2013 NEPN	/ Fractions					
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons	1 212	199		1		
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
ndeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	85	65	50	60
p-Terphenyl-d14 (surr.)	1	%	71	105	86	71
Organochlorine Pesticides						
Chlordanes - Total	0.1	mg/kg	< 0.1	-	-	-
4.4'-DDD	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDE	0.05	mg/kg	< 0.05	-	-	-
4.4'-DDT	0.05	mg/kg	< 0.05	-	-	-
a-HCH	0.05	mg/kg	< 0.05	-	-	_
Aldrin	0.05	mg/kg	< 0.05	-	-	-
b-HCH	0.05	mg/kg	< 0.05	-	-	-
d-HCH	0.05	mg/kg	< 0.05	-	-	-
Dieldrin	0.05	mg/kg	< 0.05	-	-	-
Endosulfan I	0.05	mg/kg	< 0.05	-	-	-
Endosulfan II	0.05	mg/kg	< 0.05	-	-	-
Endosulfan sulphate	0.05	mg/kg	< 0.05	-	-	-
Endrin	0.05	mg/kg	< 0.05	-	-	-
Endrin aldehyde	0.05	mg/kg	< 0.05	-	-	-
Endrin ketone	0.05	mg/kg	< 0.05	-	-	-
g-HCH (Lindane)	0.05	mg/kg	< 0.05	-	-	-
Heptachlor	0.05	mg/kg	< 0.05	-	-	-
Heptachlor epoxide	0.05	mg/kg	< 0.05	-	-	-
Hexachlorobenzene	0.05	mg/kg	< 0.05	-	-	-
Methoxychlor	0.05	mg/kg	< 0.05	-	-	-
Toxaphene	0.5	mg/kg	< 0.5	-	-	-
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	-
DDT + DDE + DDD (Total)*	0.05	mg/kg	< 0.05	_	_	_

Client Sample ID			SP9_01	SP9_02	SP9_03	SP9_04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033639	M23- Ma0033640	M23- Ma0033641	M23- Ma0033642
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOB	Linit	Wai 00, 2023	Wai 00, 2023	Wai 00, 2023	Wai 00, 2023
	LOR	Unit				
Organochlorine Pesticides	0.4		0.4			
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	132	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	83	-	-	-
Polychlorinated Biphenyls	0.4	1 "	0.4			
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1232	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1242	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1254	0.1	mg/kg	< 0.1	-	-	-
Aroclor-1260	0.1	mg/kg	< 0.1	-	-	-
Total PCB*	0.1	mg/kg	< 0.1	-	-	-
Dibutylchlorendate (surr.)	1	%	132	-	-	-
Tetrachloro-m-xylene (surr.)	1	%	83	-	-	-
Phenols (Halogenated)		T				
2-Chlorophenol	0.5	mg/kg	< 0.5	-	-	-
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	-	-	-
2.4.5-Trichlorophenol	1	mg/kg	< 1	-	-	-
2.4.6-Trichlorophenol	1	mg/kg	< 1	-	-	-
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	-	-	-
4-Chloro-3-methylphenol	1	mg/kg	< 1	-	-	-
Pentachlorophenol	1	mg/kg	< 1	-	-	-
Tetrachlorophenols - Total	10	mg/kg	< 10	-	-	-
Total Halogenated Phenol*	1	mg/kg	< 1	-	-	-
Phenois (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	-	-	-
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	-	-	-
2-Nitrophenol	1.0	mg/kg	< 1	-	-	-
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	-	-	-
2.4-Dinitrophenol	5	mg/kg	< 5	-	-	-
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	-	-
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	-	-
Total cresols*	0.5	mg/kg	< 0.5	-	-	-
4-Nitrophenol	5	mg/kg	< 5	-	-	-
Dinoseb	20	mg/kg	< 20	-	-	-
Phenol dC (ours)	0.5	mg/kg	< 0.5	-	-	-
Phenol-d6 (surr.)	1 20	%	49	-	-	-
Total Non-Halogenated Phenol*	20	mg/kg	< 20	-	-	-
Cyanide (total)	5	mg/kg	< 5	-	-	-
Fluoride	100	mg/kg	< 100	-	-	-
Heavy Metals	ı					
Arsenic	2	mg/kg	< 2	< 2	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	62	67	31	21
Copper	5	mg/kg	22	24	18	24
Lead	5	mg/kg	14	29	11	13
Mercury	0.1	mg/kg	0.1	0.1	< 0.1	< 0.1

Client Sample ID			SP9_01	SP9_02	SP9_03	SP9_04
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033639	M23- Ma0033640	M23- Ma0033641	M23- Ma0033642
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Heavy Metals						
Molybdenum	5	mg/kg	< 5	-	-	-
Nickel	5	mg/kg	40	43	51	37
Selenium	2	mg/kg	< 2	-	-	-
Silver	2	mg/kg	< 2	-	-	-
Tin	10	mg/kg	< 10	-	-	-
Zinc	5	mg/kg	71	88	52	47

Client Sample ID			SP5_01	SP5_02	SP5_03	SP10_01
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033643	M23- Ma0033644	M23- Ma0033645	M23- Ma0033646
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit	mar 55, 2525	a. 55, 2525	a. 00, 2020	00, 2020
Sample Properties	LOR	Unit				
% Moisture	1	%	11	14	15	19
Total Recoverable Hydrocarbons	l I	70	11	14	15	19
TRH C6-C9	20	ma/ka	< 20	< 20	< 20	< 20
TRH C10-C14	20	mg/kg mg/kg	< 20	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	76	140	130	< 50
TRH C29-C36	50	mg/kg	240	200	170	< 50
TRH C10-C36 (Total)	50	mg/kg	316	340	300	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1) ^{N04}	20	mg/kg	< 20	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	250	300	260	< 100
TRH >C34-C40	100	mg/kg	140	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	390	300	260	< 100
BTEX		199				
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	96	69	98	81
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions	•				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons	'					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(b&i)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5

				1	1	1
Client Sample ID			SP5_01	SP5_02	SP5_03	SP10_01
Sample Matrix			Soil	Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033643	M23- Ma0033644	M23- Ma0033645	M23- Ma0033646
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	·					
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	104	77	67	73
p-Terphenyl-d14 (surr.)	1	%	75	80	83	82
Organochlorine Pesticides	ļ					
Chlordanes - Total	0.1	mg/kg	< 0.1	_	_	< 0.1
4.4'-DDD	0.05	mg/kg	< 0.05	_	_	< 0.05
4.4'-DDE	0.05	mg/kg	< 0.05	_	_	< 0.05
4.4'-DDT	0.05	mg/kg	< 0.05	_	_	< 0.05
a-HCH	0.05	mg/kg	< 0.05	_	_	< 0.05
Aldrin	0.05	mg/kg	< 0.05	_	_	< 0.05
b-HCH	0.05	mg/kg	< 0.05	_	_	< 0.05
d-HCH	0.05	mg/kg	< 0.05	_	_	< 0.05
Dieldrin	0.05	mg/kg	< 0.05	_	_	< 0.05
Endosulfan I	0.05	mg/kg	< 0.05	_	_	< 0.05
Endosulfan II	0.05	mg/kg	< 0.05	_	-	< 0.05
Endosulfan sulphate	0.05	mg/kg	< 0.05	_	_	< 0.05
Endrin	0.05	mg/kg	< 0.05			< 0.05
Endrin aldehyde	0.05	mg/kg	< 0.05	_		< 0.05
Endrin ketone	0.05	mg/kg	< 0.05	_	_	< 0.05
g-HCH (Lindane)	0.05	mg/kg	< 0.05	_		< 0.05
Heptachlor	0.05	mg/kg	< 0.05	_	_	< 0.05
Heptachlor epoxide	0.05	mg/kg	< 0.05		-	< 0.05
Hexachlorobenzene	0.05	mg/kg	< 0.05	_		< 0.05
Methoxychlor	0.05	mg/kg	< 0.05	_		< 0.05
Toxaphene	0.05	mg/kg	< 0.05	-	-	< 0.05
Aldrin and Dieldrin (Total)*	0.05	mg/kg	< 0.05	-	-	< 0.05
DDT + DDE + DDD (Total)*	0.05		< 0.05	-	-	< 0.05
Vic EPA IWRG 621 OCP (Total)*	0.05	mg/kg	< 0.05	-		< 0.05
Vic EPA IWRG 621 Other OCP (Total)*	0.1	mg/kg	< 0.1		-	< 0.1
Dibutylchlorendate (surr.)	1	mg/kg %	134	-	-	110
Tetrachloro-m-xylene (surr.)	1	%	80	-	-	77
Polychlorinated Biphenyls	<u> </u>	70	00	-	-	11
	2.4	ma a. //	.04			:04
Aroclor-1016	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1221	0.1	mg/kg	< 0.1	-	-	< 0.1
Arcelor 1232	0.1	mg/kg	< 0.1	-	-	< 0.1
Arcelor-1242	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1248	0.1	mg/kg	< 0.1	-	-	< 0.1
Aroclor-1254 Aroclor-1260	0.1	mg/kg mg/kg	< 0.1 < 0.1	-	-	< 0.1 < 0.1

Client Comple ID			005.04	005.00	005.00	0040 04
Client Sample ID			SP5_01	SP5_02	SP5_03	SP10_01
Sample Matrix Eurofins Sample No.			Soil M23- Ma0033643	Soil M23- Ma0033644	Soil M23- Ma0033645	Soil M23- Ma0033646
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
•	1.00	1.1	Wai 00, 2023	Wai 00, 2023	Wai 00, 2023	IVIAI 00, 2023
Test/Reference	LOR	Unit				
Polychlorinated Biphenyls						
Total PCB*	0.1	mg/kg	< 0.1	-	-	< 0.1
Dibutylchlorendate (surr.)	1	%	134	-	-	110
Tetrachloro-m-xylene (surr.)	1	%	80	-	-	77
Phenols (Halogenated)		1				
2-Chlorophenol	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-Dichlorophenol	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4.5-Trichlorophenol	1	mg/kg	< 1	-	-	< 1
2.4.6-Trichlorophenol	1	mg/kg	< 1	-	-	< 1
2.6-Dichlorophenol	0.5	mg/kg	< 0.5	-	-	< 0.5
4-Chloro-3-methylphenol	1	mg/kg	< 1	-	-	< 1
Pentachlorophenol	1	mg/kg	< 1	-	-	< 1
Tetrachlorophenols - Total	10	mg/kg	< 10	-	-	< 10
Total Halogenated Phenol*	1	mg/kg	< 1	-	-	< 1
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	20	mg/kg	< 20	-	-	< 20
2-Methyl-4.6-dinitrophenol	5	mg/kg	< 5	-	-	< 5
2-Nitrophenol	1.0	mg/kg	< 1	-	-	< 1
2.4-Dimethylphenol	0.5	mg/kg	< 0.5	-	-	< 0.5
2.4-Dinitrophenol	5	mg/kg	< 5	-	-	< 5
2-Methylphenol (o-Cresol)	0.2	mg/kg	< 0.2	-	-	< 0.2
3&4-Methylphenol (m&p-Cresol)	0.4	mg/kg	< 0.4	-	-	< 0.4
Total cresols*	0.5	mg/kg	< 0.5	-	-	< 0.5
4-Nitrophenol	5	mg/kg	< 5	-	-	< 5
Dinoseb	20	mg/kg	< 20	-	-	< 20
Phenol	0.5	mg/kg	< 0.5	-	-	< 0.5
Phenol-d6 (surr.)	1	%	47	-	-	77
Total Non-Halogenated Phenol*	20	mg/kg	< 20	-	-	< 20
Cyanide (total)	5	mg/kg	< 5	-	-	< 5
Fluoride	100	mg/kg	< 100	-	-	< 100
Heavy Metals	<u>.</u>					
Arsenic	2	mg/kg	2.3	2.6	< 2	< 2
Cadmium	0.4	mg/kg	< 0.4	< 0.4	< 0.4	< 0.4
Chromium	5	mg/kg	20	29	17	84
Copper	5	mg/kg	17	17	15	32
Lead	5	mg/kg	50	380	78	41
Mercury	0.1	mg/kg	0.2	0.4	0.3	0.8
Molybdenum	5	mg/kg	< 5	-	-	< 5
Nickel	5	mg/kg	34	18	13	45
Selenium	2	mg/kg	< 2	-	-	< 2
Silver	2	mg/kg	< 2	_	_	< 2
Tin	10	mg/kg	< 10	_	_	< 10
Zinc	5	mg/kg	47	53	38	110

Client Sample ID			SP10_02	SP10_03	QC07
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033647	M23- Ma0033648	M23- Ma0033649
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit			
Sample Properties	•	<u>'</u>			
% Moisture	1	%	6.0	15	22
Total Recoverable Hydrocarbons		•			
TRH C6-C9	20	mg/kg	< 20	< 20	< 20
TRH C10-C14	20	mg/kg	< 20	< 20	< 20
TRH C15-C28	50	mg/kg	51	< 50	< 50
TRH C29-C36	50	mg/kg	< 50	< 50	< 50
TRH C10-C36 (Total)	50	mg/kg	51	< 50	< 50
TRH C6-C10	20	mg/kg	< 20	< 20	< 20
TRH C6-C10 less BTEX (F1)N04	20	mg/kg	< 20	< 20	< 20
TRH >C10-C16	50	mg/kg	< 50	< 50	< 50
TRH >C10-C16 less Naphthalene (F2) ^{N01}	50	mg/kg	< 50	< 50	< 50
TRH >C16-C34	100	mg/kg	< 100	< 100	< 100
TRH >C34-C40	100	mg/kg	< 100	< 100	< 100
TRH >C10-C40 (total)*	100	mg/kg	< 100	< 100	< 100
BTEX					
Benzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Toluene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Ethylbenzene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
m&p-Xylenes	0.2	mg/kg	< 0.2	< 0.2	< 0.2
o-Xylene	0.1	mg/kg	< 0.1	< 0.1	< 0.1
Xylenes - Total*	0.3	mg/kg	< 0.3	< 0.3	< 0.3
4-Bromofluorobenzene (surr.)	1	%	69	51	70
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions				
Naphthalene ^{N02}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Polycyclic Aromatic Hydrocarbons					
Benzo(a)pyrene TEQ (lower bound) *	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene TEQ (medium bound) *	0.5	mg/kg	0.6	0.6	0.6
Benzo(a)pyrene TEQ (upper bound) *	0.5	mg/kg	1.2	1.2	1.2
Acenaphthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Acenaphthylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benz(a)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(a)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(b&j)fluoranthene ^{N07}	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(g.h.i)perylene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Benzo(k)fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Chrysene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Dibenz(a.h)anthracene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluoranthene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Fluorene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Indeno(1.2.3-cd)pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Naphthalene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Phenanthrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Pyrene	0.5	mg/kg	< 0.5	< 0.5	< 0.5
Total PAH*	0.5	mg/kg	< 0.5	< 0.5	< 0.5
2-Fluorobiphenyl (surr.)	1	%	70	103	78

Client Sample ID			SP10_02	SP10_03	QC07
Sample Matrix			Soil	Soil	Soil
Eurofins Sample No.			M23- Ma0033647	M23- Ma0033648	M23- Ma0033649
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LC	OR Unit			
Heavy Metals					
Arsenic		2 mg/kg	3.3	17	< 2
Cadmium	0	.4 mg/kg	< 0.4	< 0.4	< 0.4
Chromium		5 mg/kg	< 5	70	120
Copper		5 mg/kg	< 5	85	42
Lead		5 mg/kg	11	55	20
Mercury	0	.1 mg/kg	< 0.1	0.5	0.2
Nickel		5 mg/kg	< 5	73	78
Zinc		5 mg/kg	8.6	400	120

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site Brisbane	Extracted Mar 21, 2023	Holding Time 7 Days
Acid Sulfate Soils Field pH Test	brisbane	Mai 21, 2023	7 Days
Method: LTM-GEN-7060 Determination of field pH (pHF) and field pH peroxide (pHFOX) tests Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Mar 22, 2022	6 Week
	brisbane	Mar 22, 2023	o vveek
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite Extraneous Material	Brisbane	Mar 22, 2023	6 Week
- Method: LTM-GEN-7050/7070	Diisbane	IVIAI 22, 2023	o week
- Method: LTM-GEN-7050/7070 % Moisture	Melbourne	Mar 14, 2023	14 Days
- Method: LTM-GEN-7080 Moisture	Meibourne	Iviai 14, 2023	14 Days
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	Meibourne	Iviai 13, 2023	14 Days
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	Meibourne	Iviai 13, 2023	14 Days
BTEX	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH	Meiboarric	Wai 15, 2025	14 Days
Eurofins Suite B7			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2010 TRH C6-C40	Molodanio	War 10, 2020	Dayo
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			Zayo
Metals M8	Melbourne	Mar 15, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			
Organochlorine Pesticides	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)		,	,
Polychlorinated Biphenyls	Melbourne	Mar 15, 2023	28 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			•
Phenols (Halogenated)	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			•
Phenols (non-Halogenated)	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Cyanide (total)	Melbourne	Mar 15, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
Fluoride	Melbourne	Mar 16, 2023	28 Days
- Method: LTM-INO-4150 Determination of Total Fluoride PART A – CIC			
Metals IWRG 621 : Metals M12	Melbourne	Mar 15, 2023	28 Days
- Method: LTM-MET-3040 Metals in Waters, Soils & Sediments by ICP-MS			

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name:

Address:

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

Order No.: Report #:

Canberra

Mitchell

ACT 2911

Tel: +61 2 6113 8091

971775 03 9290 7000

Phone: Fax:

Received: Mar 10, 2023 9:06 AM Due: Mar 20, 2023

Priority: 5 Dav

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

Welshpool

WA 6106

Contact Name: Bryden Tiddy

Eurofins Analytical Services Manager: Savini Suduweli

MARINUS LINK - HYPERBRIDGE

Project Name: Project ID:

754-MELEN215878

			mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
_	ourne Laborato	_•				Х			Х	Х	Х	Х	Х
	bane Laborator		1 Site # 207	94			Х	Х	Х	Х			\sqcup
	rnal Laboratory												\vdash
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	HEY7_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033594		Х						
2	HEY7_0.5-0.6	Mar 08, 2023		Soil	M23-Ma0033595		Х						
3	QC01	Mar 08, 2023		Soil	M23-Ma0033596		Х						
4	HEY7_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033597		Х						
5	HEY7_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033598			Х		Х			
6	HEY8_0.0-0.3	Mar 08, 2023		Soil	M23-Ma0033599		Х						
7	HEY8_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033600		Х						
8	HEY8_0.6-0.7	Mar 08, 2023		Soil	M23-Ma0033601		Х						Ш
9	HEY8_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033602		Х						Ш
10	HEY8_1.3-1.4			Soil	M23-Ma0033603			Х		Х			Ш
11	HEY6_0.0-0.3	Mar 08, 2023		Soil	M23-Ma0033604		Х						\square
12	QC03	Mar 08, 2023		Soil	M23-Ma0033605		Х						

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Newcastle 1/21 Smallwood Place Tel: +61 7 3902 4600

1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370 NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061

Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Address:

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878 Order No.:

Report #: 971775 03 9290 7000

Brisbane

Murarrie

QLD 4172

Phone: Fax:

Received: Mar 10, 2023 9:06 AM

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

Tel: +64 9 526 45 51

IANZ# 1327

Due: Mar 20, 2023 **Priority:** 5 Dav

ABN: 91 05 0159 898

Perth

Contact Name: Bryden Tiddy

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х			
13	HEY6_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033606		Х						
14	HEY6_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033607		Х						
15	HEY6_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033608			Х		Х			
16	HEY5_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033609		Х						
17	HEY5_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033610		Х						
18	HEY5_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033611		Х						
19	HEY5_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033612		Х						
20	HEY4_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033613		Х						
21	HEY4_0.4-0.5 (A)	Mar 08, 2023		Soil	M23-Ma0033614		х						
22	HEY4_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033615			Х		Х			
23	HEY4_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033616			Х		Х			
24	HEY3_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033617		Х						
25	HEY3_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033618			Х		Х			
26	HEY3_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033619			Х		Х			

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

1/21 Smallwood Place Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370 NZBN: 9429046024954 Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675

Tel: 0800 856 450

IANZ# 1290

Company Name:

Address:

Project ID:

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

754-MELEN215878

Order No.: Report #:

971775 03 9290 7000

Brisbane

Murarrie

QLD 4172

Phone: Fax:

Received: Mar 10, 2023 9:06 AM

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

Tel: +64 9 526 45 51

IANZ# 1327

Due: Mar 20, 2023 **Priority:** 5 Dav

ABN: 91 05 0159 898

Perth

Contact Name: Bryden Tiddy

Eurofins Analytical Services Manager: Savini Suduweli

Project Name: MARINUS LINK - HYPERBRIDGE

					НС	Acid	Ch	Mo	Mo	Vic	m L	ВТ
		Samp	ole Detail		HOLD	id Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Mell	ourne Laborato	ory - NATA # 1261	Site # 1254		Х			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 1261 Si	ite # 20794			Х	Х	Х	Х			
27	QC05	Mar 08, 2023	Soil	M23-Ma0033620			Х		Х			
28	HEY2_0.0-0.2	Mar 08, 2023	Soil	M23-Ma0033621		Х						
29	HEY2_0.6-0.7	Mar 08, 2023	Soil	M23-Ma0033622		Х						
30	HEY2_1.4-1.5	Mar 08, 2023	Soil	M23-Ma0033623			Х		Х			
31	HEY1_0.0-0.2	Mar 08, 2023	Soil	M23-Ma0033624		Х						
32	HEY1_0.4-0.7	Mar 08, 2023	Soil	M23-Ma0033625		Х						
33	HEY1_0.9-1.0	Mar 08, 2023	Soil	M23-Ma0033626			Х		Х			
34	HEY1_1.4-1.5	Mar 08, 2023	Soil	M23-Ma0033627			Х		Х			
35	HEY_SW2	Mar 08, 2023	Water	M23-Ma0033628						Х		
36	HEY_SW1	Mar 08, 2023	Water	M23-Ma0033629						Х		
37	QC09	Mar 08, 2023	Water	M23-Ma0033630						Х		
38	RB01	Mar 08, 2023	Water	M23-Ma0033631						Х		
39	TB01	Mar 08, 2023	Water	M23-Ma0033632								Х
40	SP2_01	Mar 08, 2023	Soil	M23-Ma0033633				Х		Х		
41	SP2_02	Mar 08, 2023	Soil	M23-Ma0033634				Х			Х	

Project Name:

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Canberra Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 NATA# 1261

Mayfield West NSW 2304 Welshpool NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name: Tetra Tech Coffey Pty Ltd VIC

Address:

Level 11, 2 Riverside Quay,

Southbank VIC 3006

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878 Order No.:

Report #: 971775 Phone: 03 9290 7000

Tel: +61 2 6113 8091

Fax:

Received: Mar 10, 2023 9:06 AM Due: Mar 20, 2023

Priority: 5 Dav

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

WA 6106

Contact Name: Bryden Tiddy

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Mell	oourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х			
42	SP2_03	Mar 08, 2023		Soil	M23-Ma0033635				Х			Х	
43	SP3_01	Mar 08, 2023		Soil	M23-Ma0033636				Х			Х	
44	SP8_01	Mar 08, 2023		Soil	M23-Ma0033637				Х			Х	
45	SP8_02	Mar 08, 2023		Soil	M23-Ma0033638				Х			Х	
46	SP9_01	Mar 08, 2023		Soil	M23-Ma0033639				Х		Х		
47	SP9_02	Mar 08, 2023		Soil	M23-Ma0033640				Х			Х	
48	SP9_03	Mar 08, 2023		Soil	M23-Ma0033641				Х			Х	
49	SP9_04	Mar 08, 2023		Soil	M23-Ma0033642				Х			Х	
50	SP5_01	Mar 08, 2023		Soil	M23-Ma0033643				Х		Х		
51	SP5_02	Mar 08, 2023		Soil	M23-Ma0033644				Х			Х	
52	SP5_03	Mar 08, 2023		Soil	M23-Ma0033645				Х			Х	
53	SP10_01	Mar 08, 2023		Soil	M23-Ma0033646				Х		Х		
54	SP10_02	Mar 08, 2023		Soil	M23-Ma0033647				Х			Х	
55	SP10_03	Mar 08, 2023		Soil	M23-Ma0033648				Х			Х	
56	QC07	Mar 08, 2023		Soil	M23-Ma0033649				Х			Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Murarrie QLD 4172

971775

03 9290 7000

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675

Tel: 0800 856 450

IANZ# 1290

NZBN: 9429046024954

Tel: +64 9 526 45 51

Mar 10, 2023 9:06 AM

IANZ# 1327

Mar 20, 2023

Eurofins Analytical Services Manager: Savini Suduweli

Company Name:

Address:

Test Counts

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

Phone: Fax:

23

11 28

Canberra

Mitchell

Order No.:

Report #:

ACT 2911

Tel: +61 2 6113 8091

Due: Priority:

5 Dav **Contact Name:** Bryden Tiddy

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

Welshpool

WA 6106

Received:

Project Name:

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH	
Mell	bourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х	
Bris	bane Laboratory	/ - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х				
57	HEY4_0.4-0.5 (B)	Mar 08, 2023		Soil	M23-Ma0033692	Χ								

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant, Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds.
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

DryWhere a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Method Blank					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	mg/kg	< 0.5	0.5	Pass	
Acenaphthylene	mg/kg	< 0.5	0.5	Pass	
Anthracene	mg/kg	< 0.5	0.5	Pass	
Benz(a)anthracene	mg/kg	< 0.5	0.5	Pass	
Benzo(a)pyrene	mg/kg	< 0.5	0.5	Pass	
Benzo(b&j)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Benzo(g.h.i)perylene	mg/kg	< 0.5	0.5	Pass	
Benzo(k)fluoranthene	mg/kg	< 0.5	0.5	Pass	
Chrysene	mg/kg	< 0.5	0.5	Pass	
Dibenz(a.h)anthracene	mg/kg	< 0.5	0.5	Pass	
Fluoranthene	mg/kg	< 0.5	0.5	Pass	
Fluorene	mg/kg	< 0.5	0.5	Pass	
Indeno(1.2.3-cd)pyrene	mg/kg	< 0.5	0.5	Pass	
Naphthalene	mg/kg	< 0.5	0.5	Pass	
Phenanthrene	mg/kg	< 0.5	0.5	Pass	
Pyrene	mg/kg	< 0.5	0.5	Pass	
Method Blank					
Fluoride	mg/kg	< 100	100	Pass	
LCS - % Recovery				•	
Total Recoverable Hydrocarbons					
TRH C6-C9	%	110	70-130	Pass	
TRH C6-C10	%	108	70-130	Pass	
LCS - % Recovery				•	
BTEX					
Benzene	%	91	70-130	Pass	
Toluene	%	92	70-130	Pass	
Ethylbenzene	%	99	70-130	Pass	
m&p-Xylenes	%	102	70-130	Pass	
Xylenes - Total*	%	101	70-130	Pass	
LCS - % Recovery					
Total Recoverable Hydrocarbons - 2013 NEPM Fractions					
Naphthalene	%	94	70-130	Pass	
LCS - % Recovery					
Polycyclic Aromatic Hydrocarbons					
Acenaphthene	%	104	70-130	Pass	
Acenaphthylene	%	110	70-130	Pass	
Anthracene	%	106	70-130	Pass	
Benz(a)anthracene	%	101	70-130	Pass	
Benzo(a)pyrene	%	118	70-130	Pass	
Benzo(b&j)fluoranthene	%	116	70-130	Pass	
Benzo(g.h.i)perylene	%	90	70-130	Pass	
Benzo(k)fluoranthene	%	116	70-130	Pass	
Chrysene	%	117	70-130	Pass	
Dibenz(a.h)anthracene	%	74	70-130	Pass	
Fluoranthene	%	115	70-130	Pass	
Fluorene	%	110	70-130	Pass	
Indeno(1.2.3-cd)pyrene	%	101	70-130	Pass	
Naphthalene	%	107	70-130	Pass	
Phenanthrene	%	111	70-130	Pass	
Pyrene	%	118	70-130	Pass	
LCS - % Recovery	1 /0	1 110	1 70-130	1 433	

Test			Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Fluoride			%	81		70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1		Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery								
Polycyclic Aromatic Hydrocarbor	ıs			Result 1				
Acenaphthene	M23-Ma0033639	CP	%	89		70-130	Pass	
Acenaphthylene	M23-Ma0033639	CP	%	91		70-130	Pass	
Anthracene	M23-Ma0033639	CP	%	94		70-130	Pass	
Benz(a)anthracene	M23-Ma0033639	CP	%	97		70-130	Pass	
Benzo(a)pyrene	M23-Ma0033639	CP	%	104		70-130	Pass	
Benzo(b&j)fluoranthene	M23-Ma0033639	CP	%	108		70-130	Pass	
Benzo(g.h.i)perylene	M23-Ma0033639	CP	%	103		70-130	Pass	
Benzo(k)fluoranthene	M23-Ma0033639	СР	%	91		70-130	Pass	
Chrysene	M23-Ma0033639	СР	%	98		70-130	Pass	
Dibenz(a.h)anthracene	M23-Ma0033639	CP	%	92		70-130	Pass	
Fluoranthene	M23-Ma0033639	СР	%	80		70-130	Pass	
Fluorene	M23-Ma0033639	CP	%	85		70-130	Pass	
Indeno(1.2.3-cd)pyrene	M23-Ma0033639	CP	%	96		70-130	Pass	
Naphthalene	M23-Ma0033639	CP	%	129		70-130	Pass	
Phenanthrene	M23-Ma0033639	CP	%	82		70-130	Pass	
Pyrene	M23-Ma0033639	CP	%	84		70-130	Pass	
Spike - % Recovery	WIZO WIA0033033	<u> </u>	70	1 04		70-130	1 433	
Organochlorine Pesticides				Result 1				
a-HCH	M23-Ma0033639	CP	%	80		70-130	Pass	
	W23-Wa0033039	CF	/0] 00		70-130	Fass	
Spike - % Recovery Phenols (Halogenated)				Result 1			I	
	M23-Ma0033639	СР	%			20.420	Door	
2-Chlorophenol		CP CP		102		30-130	Pass	
2.4-Dichlorophenol	M23-Ma0033639 M23-Ma0033639	CP CP	%	85 71		30-130	Pass	
2.4.5-Trichlorophenol			%			30-130	Pass	
2.4.6-Trichlorophenol	M23-Ma0033639	CP	%	82		30-130	Pass	
2.6-Dichlorophenol	M23-Ma0033639	CP	%	86		30-130	Pass	
4-Chloro-3-methylphenol	M23-Ma0033639	CP	%	86		30-130	Pass	
Pentachlorophenol	M23-Ma0033639	CP	%	34		30-130	Pass	
Tetrachlorophenols - Total	M23-Ma0033639	CP	%	42		30-130	Pass	
Spike - % Recovery					l I		I	
Phenols (non-Halogenated)	_		1	Result 1				
2-Nitrophenol	M23-Ma0033639	CP	%	93		30-130	Pass	
2.4-Dimethylphenol	M23-Ma0033639	CP	%	70		30-130	Pass	
2-Methylphenol (o-Cresol)	M23-Ma0033639	CP	%	88		30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M23-Ma0033639	CP	%	90		30-130	Pass	
4-Nitrophenol	M23-Ma0033639	CP	%	85		30-130	Pass	
Dinoseb	M23-Ma0033639	CP	%	31		30-130	Pass	
Phenol	M23-Ma0033639	CP	%	111		30-130	Pass	
Spike - % Recovery								
Heavy Metals				Result 1				
Arsenic	M23-Ma0033644	CP	%	90		75-125	Pass	
Cadmium	M23-Ma0033644	CP	%	97		75-125	Pass	
Chromium	M23-Ma0033644	CP	%	82		75-125	Pass	
Copper	M23-Ma0033644	СР	%	99		75-125	Pass	
Mercury	M23-Ma0033644	СР	%	113		75-125	Pass	
Molybdenum	M23-Ma0033644	СР	%	100		75-125	Pass	
Nickel	M23-Ma0033644	CP	%	95		75-125	Pass	
Selenium	M23-Ma0033644	CP	%	91		75-125	Pass	
Silver	M23-Ma0033644	CP	%	101		75-125	Pass	
Tin	M23-Ma0033644	CP	%	98		75-125	Pass	

Test	Lab Sample ID	QA	Units	Result 1			Acceptance	Pass	Qualifying
	-	Source					Limits	Limits	Code
Zinc	M23-Ma0033644	CP	%	92			75-125	Pass	
Spike - % Recovery					T T				
				Result 1				_	
Fluoride	M23-Ma0033646	CP	%	79			70-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	M23-Ma0033601	CP	pH Units	5.3	5.3	pass	20%	Pass	
Duplicate									
Acid Sulfate Soils Field pH Test				Result 1	Result 2	RPD			
pH-F (Field pH test)*	M23-Ma0033602	CP	pH Units	4.8	4.9	pass	20%	Pass	
Duplicate									
Actual Acidity (NLM-3.2)				Result 1	Result 2	RPD			
pH-KCL (NLM-3.1)	M23-Ma0033626	CP	pH Units	5.9	5.9	<1	20%	Pass	
Titratable Actual Acidity (NLM-3.2)	M23-Ma0033626	CP	mol H+/t	7.2	7.3	1.3	20%	Pass	
Titratable Actual Acidity (NLM-3.2)	M23-Ma0033626	CP	% pyrite S	0.012	0.012	1.3	30%	Pass	
Duplicate									
Potential Acidity - Chromium Red	ucible Sulfur			Result 1	Result 2	RPD			
Chromium Reducible Sulfur (s-SCr) (NLM-2.1)	M23-Ma0033626	СР	% S	0.007	0.007	N/A	20%	Pass	
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	M23-Ma0033626	СР	mol H+/t	4.2	4.1	2.9	30%	Pass	
Duplicate									
Extractable Sulfur				Result 1	Result 2	RPD			
Sulfur - KCl Extractable	M23-Ma0033626	CP	% S	N/A	N/A	N/A	30%	Pass	
HCI Extractable Sulfur	M23-Ma0033626	CP	% S	N/A	N/A	N/A	20%	Pass	
Duplicate									
Retained Acidity (S-NAS)				Result 1	Result 2	RPD			
Net Acid soluble sulfur (SNAS) NLM-4.1	M23-Ma0033626	СР	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (s-SNAS) NLM-4.1	M23-Ma0033626	СР	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (a-SNAS) NLM-4.1	M23-Ma0033626	СР	mol H+/t	N/A	N/A	N/A	30%	Pass	
Duplicate									
Acid Neutralising Capacity (ANCbt)			Result 1	Result 2	RPD			
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	M23-Ma0033626	СР	% CaCO3	N/A	N/A	N/A	20%	Pass	
Acid Neutralising Capacity - (s-	M00 M-000000	0.0	0, 0	N1/A	NI/A	NI/A	2004	D	
ANC Finance Factor	M23-Ma0033626	CP	% S	N/A	N/A	N/A	30%	Pass	
ANC Fineness Factor	M23-Ma0033626	CP	factor	1.5	1.5	<1	30%	Pass	
Duplicate Not Acidity (Including ANC)				Pocult 1	Pocult 2	DDD			
Net Acidity (Including ANC) CRS Suite - Net Acidity - NASSG				Result 1	Result 2	RPD			
(Including ANC)	M23-Ma0033626	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
CRS Suite - Net Acidity - NASSG (Including ANC)	M23-Ma0033626	СР	mol H+/t	11	11	<1	30%	Pass	
CRS Suite - Liming Rate - NASSG (Including ANC)	M23-Ma0033626	СР	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate					1				
Sample Properties				Result 1	Result 2	RPD			
% Moisture	M23-Ma0033627	CP	%	8.6	7.6	13	30%	Pass	
Duplicate					1				
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M23-Ma0033633	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10	M23-Ma0033633	CP	mg/kg	< 20	< 20	<1	30%	Pass	

Dunlicate									
Duplicate				Descript	Deside	DDC			
BTEX				Result 1	Result 2	RPD		+_ +	
Benzene	M23-Ma0033633	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M23-Ma0033633	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M23-Ma0033633	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M23-Ma0033633	CP	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M23-Ma0033633	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	M23-Ma0033633	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate				_					
Total Recoverable Hydrocarbor	ns - 2013 NEPM Fracti	ons	1	Result 1	Result 2	RPD			
Naphthalene	M23-Ma0033633	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M23-Ma0033633	CP	mg/kg	< 2	2.1	3.6	30%	Pass	
Cadmium	M23-Ma0033633	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M23-Ma0033633	СР	mg/kg	130	130	<1	30%	Pass	
Copper	M23-Ma0033633	СР	mg/kg	50	51	<1	30%	Pass	
Lead	M23-Ma0033633	СР	mg/kg	110	110	1.3	30%	Pass	
Mercury	M23-Ma0033633	СР	mg/kg	0.3	0.3	7.6	30%	Pass	
Molybdenum	M23-Ma0033633	СР	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M23-Ma0033633	CP	mg/kg	98	99	1.7	30%	Pass	
Selenium	M23-Ma0033633	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M23-Ma0033633	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Tin	M23-Ma0033633	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M23-Ma0033633	CP	mg/kg	120	120	1.1	30%	Pass	
Duplicate	M20 Maccocco	<u> </u>	1 1119/119	120	1 120	111	0070	1 400	
Sample Properties				Result 1	Result 2	RPD		T	
% Moisture	M23-Ma0033638	CP	%	7.2	7.1	1.3	30%	Pass	
Duplicate	WZ3 Wa0033030	01	70	1.2	, ,,,	1.0	3070	1 433	
Total Recoverable Hydrocarboi	ne			Result 1	Result 2	RPD			
TRH C10-C14	M23-Ma0033638	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M23-Ma0033638	CP		58	51	12	30%	Pass	
TRH C19-C26	M23-Ma0033638	CP	mg/kg	140	120	18	30%	Pass	
		CP	mg/kg						
TRH >C10-C16	M23-Ma0033638 M23-Ma0033638		mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34		CP	mg/kg	180	150	17	30%	Pass	
TRH >C34-C40	M23-Ma0033638	CP	mg/kg	< 100	< 100	<1	30%	Pass	
Duplicate Deliveration Agents and Agents an				Daguit 4	Daguit 0	DDD			
Polycyclic Aromatic Hydrocarb		0.0		Result 1	Result 2	RPD	000/	D	
Acenaphthene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Acenaphthylene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Anthracene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benz(a)anthracene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(a)pyrene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(b&j)fluoranthene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(g.h.i)perylene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Benzo(k)fluoranthene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Chrysene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Dibenz(a.h)anthracene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluoranthene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Fluorene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Indeno(1.2.3-cd)pyrene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Naphthalene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Phenanthrene	M23-Ma0033638	CP	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
	M00 M-000000	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	<u>-</u>
Pyrene	M23-Ma0033638	<u> </u>	mg/kg	1 0.0	1 0.0		0070	1 400	
Pyrene Duplicate	M23-M80033638	01	ing/kg		10.0			1 400	
	M23-M80033638			Result 1	Result 2	RPD		1 400	

Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C6-C9	M23-Ma0033644	СР	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C6-C10	M23-Ma0033644	CP	mg/kg	< 20	< 20	<1	30%	Pass	
Duplicate			<u> </u>						
BTEX				Result 1	Result 2	RPD			
Benzene	M23-Ma0033644	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Toluene	M23-Ma0033644	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Ethylbenzene	M23-Ma0033644	CP	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
m&p-Xylenes	M23-Ma0033644	СР	mg/kg	< 0.2	< 0.2	<1	30%	Pass	
o-Xylene	M23-Ma0033644	СР	mg/kg	< 0.1	< 0.1	<1	30%	Pass	
Xylenes - Total*	M23-Ma0033644	CP	mg/kg	< 0.3	< 0.3	<1	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons	- 2013 NEPM Fracti	ons		Result 1	Result 2	RPD			
Naphthalene	M23-Ma0033644	СР	mg/kg	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
Heavy Metals				Result 1	Result 2	RPD			
Arsenic	M23-Ma0033644	CP	mg/kg	2.6	2.6	<1	30%	Pass	
Cadmium	M23-Ma0033644	CP	mg/kg	< 0.4	< 0.4	<1	30%	Pass	
Chromium	M23-Ma0033644	CP	mg/kg	29	29	<1	30%	Pass	
Copper	M23-Ma0033644	CP	mg/kg	17	18	<1	30%	Pass	
Lead	M23-Ma0033644	CP	mg/kg	380	380	<1	30%	Pass	
Mercury	M23-Ma0033644	CP	mg/kg	0.4	0.4	1.4	30%	Pass	
Molybdenum	M23-Ma0033644	CP	mg/kg	< 5	< 5	<1	30%	Pass	
Nickel	M23-Ma0033644	CP	mg/kg	18	18	1.6	30%	Pass	
Selenium	M23-Ma0033644	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Silver	M23-Ma0033644	CP	mg/kg	< 2	< 2	<1	30%	Pass	
Tin	M23-Ma0033644	CP	mg/kg	< 10	< 10	<1	30%	Pass	
Zinc	M23-Ma0033644	CP	mg/kg	53	53	<1	30%	Pass	
Duplicate									
Sample Properties				Result 1	Result 2	RPD			
% Moisture	M23-Ma0033648	CP	%	15	16	10	30%	Pass	
Duplicate									
Total Recoverable Hydrocarbons				Result 1	Result 2	RPD			
TRH C10-C14	M23-Ma0033648	CP	mg/kg	< 20	< 20	<1	30%	Pass	
TRH C15-C28	M23-Ma0033648	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH C29-C36	M23-Ma0033648	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C10-C16	M23-Ma0033648	CP	mg/kg	< 50	< 50	<1	30%	Pass	
TRH >C16-C34	M23-Ma0033648	CP	mg/kg	< 100	< 100	<1	30%	Pass	
TRH >C34-C40	M23-Ma0033648	CP	mg/kg	< 100	< 100	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime No Some samples have been subcontracted No

Qualifier Codes/Comments

Code	Description

N02

S05

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis). N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3' S01

Retained Acidity is Reported when the pHKCl is less than pH 4.5 S02

Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 S03 S04 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period

Field Screen uses the following fizz rating to classify the rate the samples reacted to the peroxide: 1.0; No reaction to slight. 2.0; Moderate reaction. 3.0; Strong reaction with persistent froth. 4.0; Extreme reaction.

Authorised by:

Harry Bacalis Analytical Services Manager Edward Lee Senior Analyst-Organic Emily Rosenberg Senior Analyst-Metal Harry Bacalis Senior Analyst-Volatile

Jonathon Angell Senior Analyst-Sample Properties

Senior Analyst-SPOCAS Jonathon Angell Joseph Edouard Senior Analyst-Organic Joseph Edouard Senior Analyst-Volatile Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal Scott Beddoes Senior Analyst-Inorganic Scott Beddoes Senior Analyst-Metal

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

General Manager

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Tetra Tech Coffey Pty Ltd VIC Level 11, 2 Riverside Quay, Southbank VIC 3006

NATA Accredited Accreditation Number 1261 Site Number 1254

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Bryden Tiddy

Report 971775-W

Project name MARINUS LINK - HYPERBRIDGE

Project ID 754-MELEN215878
Received Date Mar 10, 2023

Client Sample ID			HEY_SW2	HEY_SW1	QC09	RB01
Sample Matrix			Water	Water	Water	Water
Formation Communication			M23-	M23-	M23-	M23-
Eurofins Sample No.			Ma0033628	Ma0033629	Ma0033630	Ma0033631
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Total Recoverable Hydrocarbons						
TRH C6-C9	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C10-C14	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH C15-C28	0.1	mg/L	< 0.1	0.4	0.4	< 0.1
TRH C29-C36	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH C10-C36 (Total)	0.1	mg/L	< 0.1	0.4	0.4	< 0.1
TRH C6-C10	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02	< 0.02	< 0.02	< 0.02
TRH >C10-C16	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C10-C16 less Naphthalene (F2) ^{N01}	0.05	mg/L	< 0.05	< 0.05	< 0.05	< 0.05
TRH >C16-C34	0.1	mg/L	< 0.1	0.4	0.4	< 0.1
TRH >C34-C40	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
TRH >C10-C40 (total)*	0.1	mg/L	< 0.1	0.4	0.4	< 0.1
втех						
Benzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Toluene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
o-Xylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Bromofluorobenzene (surr.)	1	%	105	102	98	102
Total Recoverable Hydrocarbons - 2013 NEPM	Fractions					
Naphthalene ^{N02}	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Polycyclic Aromatic Hydrocarbons	·					
Acenaphthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Acenaphthylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benz(a)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(a)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(b&i)fluoranthene ^{N07}	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(g.h.i)perylene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Benzo(k)fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Chrysene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Dibenz(a.h)anthracene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluoranthene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Fluorene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001

Client Sample ID			HEY_SW2	HEY_SW1	QC09	RB01
			Water	Water	Water	Water
Sample Matrix Eurofins Sample No.			M23- Ma0033628	M23- Ma0033629	M23- Ma0033630	M23- Ma0033631
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
•	LOD	l lait	Wai 00, 2023	Wai 00, 2023	Wai 00, 2023	Wai 00, 2023
Test/Reference	LOR	Unit				
Polycyclic Aromatic Hydrocarbons	0.004		0.004	2 224	0.004	0.004
Indeno(1.2.3-cd)pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Naphthalene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Phenanthrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Pyrene	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Total PAH*	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
2-Fluorobiphenyl (surr.)	1	%	52	75	57	92
p-Terphenyl-d14 (surr.)	1	%	54	87	83	52
Organochlorine Pesticides	<u> </u>					
Chlordanes - Total	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
4.4'-DDD	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDE	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
4.4'-DDT	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
a-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Aldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
b-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
d-HCH	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Dieldrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan I	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan II	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endosulfan sulphate	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin aldehyde	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Endrin ketone	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
g-HCH (Lindane)	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Heptachlor epoxide	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Hexachlorobenzene	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Methoxychlor	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Toxaphene	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aldrin and Dieldrin (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
DDT + DDE + DDD (Total)*	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Vic EPA IWRG 621 OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Vic EPA IWRG 621 Other OCP (Total)*	0.002	mg/L	< 0.002	< 0.002	< 0.002	< 0.002
Dibutylchlorendate (surr.)	1	%	90	58	93	59
Tetrachloro-m-xylene (surr.)	1	%	74	97	55	51
Polychlorinated Biphenyls						
Aroclor-1016	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1221	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1232	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1242	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1248	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1254	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Aroclor-1260	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Total PCB*	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Dibutylchlorendate (surr.)	1	%	90	58	93	59
Tetrachloro-m-xylene (surr.)	1	%	74	97	55	51

Client Sample ID			HEY_SW2	HEY_SW1	QC09	RB01
Sample Matrix			Water	Water	Water	Water
			M23-	M23-	M23-	M23-
Eurofins Sample No.			Ma0033628	Ma0033629	Ma0033630	Ma0033631
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Phenols (Halogenated)						
2-Chlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
2.4-Dichlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
2.4.5-Trichlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
2.4.6-Trichlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
2.6-Dichlorophenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
4-Chloro-3-methylphenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Pentachlorophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Tetrachlorophenols - Total	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03
Total Halogenated Phenol*	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
Phenols (non-Halogenated)						
2-Cyclohexyl-4.6-dinitrophenol	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
2-Methyl-4.6-dinitrophenol	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03
2-Nitrophenol	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
2.4-Dimethylphenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
2.4-Dinitrophenol	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03
2-Methylphenol (o-Cresol)	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
3&4-Methylphenol (m&p-Cresol)	0.006	mg/L	< 0.006	< 0.006	< 0.006	< 0.006
Total cresols*	0.01	mg/L	< 0.01	< 0.01	< 0.01	< 0.01
4-Nitrophenol	0.03	mg/L	< 0.03	< 0.03	< 0.03	< 0.03
Dinoseb	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Phenol	0.003	mg/L	< 0.003	< 0.003	< 0.003	< 0.003
Phenol-d6 (surr.)	1	%	59	46	27	35
Total Non-Halogenated Phenol*	0.1	mg/L	< 0.1	< 0.1	< 0.1	< 0.1
Cyanide (total)	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Fluoride	0.5	mg/L	< 0.5	< 0.5	< 0.5	< 0.5
Heavy Metals	'					
Arsenic	0.001	mg/L	0.001	< 0.001	< 0.001	< 0.001
Cadmium	0.0002	mg/L	< 0.0002	< 0.0002	< 0.0002	< 0.0002
Chromium	0.001	mg/L	< 0.001	< 0.001	0.001	< 0.001
Copper	0.001	mg/L	0.003	0.003	0.004	< 0.001
Lead	0.001	mg/L	< 0.001	0.001	0.002	< 0.001
Mercury	0.0001	mg/L	< 0.0001	< 0.0001	< 0.0001	< 0.0001
Molybdenum	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Nickel	0.001	mg/L	0.005	0.002	0.002	< 0.001
Selenium	0.001	mg/L	< 0.001	< 0.001	< 0.001	< 0.001
Silver	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Tin	0.005	mg/L	< 0.005	< 0.005	< 0.005	< 0.005
Zinc	0.005	mg/L	0.067	0.012	0.011	< 0.005

Client Sample ID Sample Matrix			TB01 Water M23-
Eurofins Sample No.			Ma0033632
Date Sampled			Mar 08, 2023
Test/Reference	LOR	Unit	
Total Recoverable Hydrocarbons			
TRH C6-C9	0.02	mg/L	< 0.02
TRH C6-C10	0.02	mg/L	< 0.02
TRH C6-C10 less BTEX (F1)N04	0.02	mg/L	< 0.02
ВТЕХ			
Benzene	0.001	mg/L	< 0.001
Toluene	0.001	mg/L	< 0.001
Ethylbenzene	0.001	mg/L	< 0.001
m&p-Xylenes	0.002	mg/L	< 0.002
o-Xylene	0.001	mg/L	< 0.001
Xylenes - Total*	0.003	mg/L	< 0.003
4-Bromofluorobenzene (surr.)	1	%	104
Volatile Organics			
Naphthalene ^{N02}	0.01	mg/L	< 0.01

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Total Recoverable Hydrocarbons - 1999 NEPM Fractions	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Total Recoverable Hydrocarbons	Melbourne	Mar 14, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
BTEX	Melbourne	Mar 16, 2023	14 Days
- Method: LTM-ORG-2010 BTEX and Volatile TRH			
Eurofins Suite B7			
Total Recoverable Hydrocarbons - 2013 NEPM Fractions	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2010 TRH C6-C40			
Polycyclic Aromatic Hydrocarbons	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2130 PAH and PhenoIs in Soil and Water			
Organochlorine Pesticides	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8270)			
Polychlorinated Biphenyls	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2220 OCP & PCB in Soil and Water (USEPA 8082)			
Phenols (Halogenated)	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Phenols (non-Halogenated)	Melbourne	Mar 16, 2023	7 Days
- Method: LTM-ORG-2130 PAH and Phenols in Soil and Water			
Cyanide (total)	Melbourne	Mar 16, 2023	14 Days
- Method: LTM-INO-4020 Total Free WAD Cyanide by CFA			
Fluoride	Melbourne	Mar 16, 2023	28 Days
- Method: in-house method LTM-INO-4390 Fluoride by Discrete Analyser			
Metals IWRG 621 : Metals M12	Melbourne	Mar 16, 2023	28 Days
- Method:			

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Canberra Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name:

Project Name:

Address:

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878 Order No.:

Report #:

Tel: +61 2 6113 8091

971775 03 9290 7000

Phone: Fax:

Received: Mar 10, 2023 9:06 AM

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

Auckland

Penrose,

NZBN: 9429046024954

Due: Mar 20, 2023 **Priority:** 5 Dav

ABN: 91 05 0159 898

46-48 Banksia Road

Perth

Contact Name: Bryden Tiddy

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254								Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH	
						Х			Х	Х	Х	Х	Х	i
	bane Laboratory		1 Site # 2079	94			Х	Х	Х	Х				ı
	rnal Laboratory													ı
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID									l
1	HEY7_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033594		Х							ı
2	HEY7_0.5-0.6	Mar 08, 2023		Soil	M23-Ma0033595		Х							ı
3	QC01	Mar 08, 2023		Soil	M23-Ma0033596		Х							ı
4	HEY7_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033597		Х							ı
5	HEY7_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033598			Х		Х				ì
6	HEY8_0.0-0.3	Mar 08, 2023		Soil	M23-Ma0033599		Х							ı
7	HEY8_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033600		Х							ı
8	HEY8_0.6-0.7	Mar 08, 2023		Soil	M23-Ma0033601		Х						\sqcup	ı
9	HEY8_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033602		Х						\sqcup	ı
10	HEY8_1.3-1.4	Mar 08, 2023		Soil	M23-Ma0033603			Х		Х			\sqcup	ı
11	HEY6_0.0-0.3	Mar 08, 2023		Soil	M23-Ma0033604		Х						\sqcup	i
12	QC03	Mar 08, 2023		Soil	M23-Ma0033605		Х							

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Newcastle 1/21 Smallwood Place 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

ABN: 91 05 0159 898

Perth

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Address:

Tetra Tech Coffey Pty Ltd VIC

MARINUS LINK - HYPERBRIDGE

Level 11, 2 Riverside Quay, Southbank

VIC 3006

Order No.: Report #: Phone:

971775 03 9290 7000

Brisbane

Murarrie

QLD 4172

Fax:

Received: Mar 10, 2023 9:06 AM

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

35 O'Rorke Road

Tel: +64 9 526 45 51

Auckland 1061

IANZ# 1327

Auckland

Penrose,

NZBN: 9429046024954

Due: Mar 20, 2023 Priority: 5 Dav

Contact Name: Bryden Tiddy

Pro	oject ID:	754-MELEN	215878											
	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254							Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH	
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х	
Brisl	bane Laboratory	y - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х				
13	HEY6_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033606		Х							
14	HEY6_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033607		Х							
15	HEY6_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033608			Х		Х				
16	HEY5_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033609		Х							
17	HEY5_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033610		Х							
18	HEY5_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033611		Х							
19	HEY5_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033612		Х							
20	HEY4_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033613		Х							
21	HEY4_0.4-0.5 (A)	Mar 08, 2023		Soil	M23-Ma0033614		Х							
22	HEY4_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033615			Х		Х				
23	HEY4_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033616			Х		Х				
24	HEY3_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033617		Х							
25	HEY3_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033618			Х		Х				
26	HEY3_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033619			Х		Х				

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 NATA# 1261

Mayfield West NSW 2304 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name:

Address:

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

Project Name:

Project ID:

754-MELEN215878

MARINUS LINK - HYPERBRIDGE

Order No.: Report #:

Tel: +61 2 6113 8091

971775 03 9290 7000

Phone: Fax:

Received: Mar 10, 2023 9:06 AM

Due: Mar 20, 2023 **Priority:** 5 Dav

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

Welshpool

WA 6106

Contact Name: Bryden Tiddy

Sample Detail							Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	Site # 2079	94			Х	Х	Х	Х			
27	QC05	Mar 08, 2023		Soil	M23-Ma0033620			Х		Х			
28	HEY2_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033621		Х						
29	HEY2_0.6-0.7	Mar 08, 2023		Soil	M23-Ma0033622		Х						
30	HEY2_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033623			Х		Х			
31	HEY1_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033624		Х						
32	HEY1_0.4-0.7	Mar 08, 2023		Soil	M23-Ma0033625		Х						
33	HEY1_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033626			Х		Х			
34	HEY1_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033627			Х		Х			
35	HEY_SW2	Mar 08, 2023		Water	M23-Ma0033628						Х		
36	HEY_SW1	Mar 08, 2023		Water	M23-Ma0033629						Х		
37	QC09	Mar 08, 2023		Water	M23-Ma0033630						Х		
38	RB01	Mar 08, 2023		Water	M23-Ma0033631						Х		
39	TB01	Mar 08, 2023		Water	M23-Ma0033632								Х
40	SP2_01	Mar 08, 2023		Soil	M23-Ma0033633				Х		Х		
41	SP2_02	Mar 08, 2023		Soil	M23-Ma0033634				Х			Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: 0800 856 450 Tel: +64 9 526 45 51 IANZ# 1327 IANZ# 1290

Company Name:

Tetra Tech Coffey Pty Ltd VIC

Address:

Level 11, 2 Riverside Quay,

Southbank VIC 3006

MARINUS LINK - HYPERBRIDGE

Project Name: Project ID:

754-MELEN215878

Order No.: Report #:

Tel: +61 2 6113 8091

971775 03 9290 7000

Phone: Fax:

Received: Mar 10, 2023 9:06 AM Due: Mar 20, 2023 **Priority:** 5 Dav

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

Welshpool

WA 6106

Contact Name: Bryden Tiddy

Sample Detail							Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х
Bris	bane Laborator	y - NATA # 126	1 Site # 207	94			Х	Х	Х	Х			
42	SP2_03	Mar 08, 2023		Soil	M23-Ma0033635				Х			Х	
43	SP3_01	Mar 08, 2023		Soil	M23-Ma0033636				Х			Х	
44	SP8_01	Mar 08, 2023		Soil	M23-Ma0033637				Х			Х	
45	SP8_02	Mar 08, 2023		Soil	M23-Ma0033638				Х			Х	
46	SP9_01	Mar 08, 2023		Soil	M23-Ma0033639				Х		Х		
47	SP9_02	Mar 08, 2023		Soil	M23-Ma0033640				Х			Х	
48	SP9_03	Mar 08, 2023		Soil	M23-Ma0033641				Х			Х	
49	SP9_04	Mar 08, 2023		Soil	M23-Ma0033642				Х			Х	
50	SP5_01	Mar 08, 2023		Soil	M23-Ma0033643				Х		Х		
51	SP5_02	Mar 08, 2023		Soil	M23-Ma0033644				Х			Х	
52	SP5_03	Mar 08, 2023		Soil	M23-Ma0033645				Х			Х	
53	SP10_01	Mar 08, 2023		Soil	M23-Ma0033646				Х		Х		
54	SP10_02	Mar 08, 2023		Soil	M23-Ma0033647				Х			Х	
55	SP10_03	Mar 08, 2023		Soil	M23-Ma0033648				Х			Х	
56	QC07	Mar 08, 2023		Soil	M23-Ma0033649				Х			Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 1/21 Smallwood Place QLD 4172

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 Tel: +61 7 3902 4600 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

NZBN: 9429046024954 Auckland Christchurch

35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Company Name:

Tetra Tech Coffey Pty Ltd VIC

Address:

Level 11, 2 Riverside Quay,

Southbank

VIC 3006

Project Name: Project ID:

MARINUS LINK - HYPERBRIDGE

754-MELEN215878

Order No.: Report #:

Phone:

Fax:

971775 03 9290 7000

Brisbane

Murarrie

T > 0 3 3 / m m

Received: Mar 10, 2023 9:06 AM

Due: Mar 20, 2023 **Priority:** 5 Dav

Contact Name: Bryden Tiddy

Sample Detail							Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 1261 Site # 1254						Χ			Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261 Site # 20794							Х	Х	Х	Х			
57	HEY4_0.4-0.5 (B)	Mar 08, 2023		Soil	M23-Ma0033692	Χ							
Test	Counts					1	23	11	28	28	8	13	1

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant, Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

Dry Where a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting.

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Т		Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code	
Method Blank							
Total Recoverable Hydrocarb	ons						
TRH C6-C9			mg/L	< 0.02	0.02	Pass	
TRH C6-C10			mg/L	< 0.02	0.02	Pass	
Method Blank							
BTEX							
Benzene			mg/L	< 0.001	0.001	Pass	
Toluene			mg/L	< 0.001	0.001	Pass	
Ethylbenzene			mg/L	< 0.001	0.001	Pass	
m&p-Xylenes			mg/L	< 0.002	0.002	Pass	
o-Xylene			mg/L	< 0.001	0.001	Pass	
Xylenes - Total*			mg/L	< 0.003	0.003	Pass	
Method Blank							
Total Recoverable Hydrocarb	ons - 2013 NEPM Fract	ions					
Naphthalene			mg/L	< 0.01	0.01	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1	Acceptance Limits	Pass Limits	Qualifying Code
Spike - % Recovery		004.00				2	
Polycyclic Aromatic Hydroca	rbons			Result 1			
Acenaphthene	M23-Ma0033629	СР	%	101	70-130	Pass	
Acenaphthylene	M23-Ma0033629	CP	%	97	70-130	Pass	
Anthracene	M23-Ma0033629	CP	%	93	70-130	Pass	
Benz(a)anthracene	M23-Ma0033629	CP	%	108	70-130	Pass	
Benzo(a)pyrene	M23-Ma0033629	CP	%	82	70-130	Pass	
Benzo(b&j)fluoranthene	M23-Ma0033629	CP	%	88	70-130	Pass	
Benzo(g.h.i)perylene	M23-Ma0033629	CP	%	82	70-130	Pass	
Benzo(k)fluoranthene	M23-Ma0033629	CP	%	82	70-130	Pass	
Chrysene	M23-Ma0033629	CP	%	108	70-130	Pass	
Dibenz(a.h)anthracene	M23-Ma0033629	CP	%	91	70-130	Pass	
Fluoranthene	M23-Ma0033629	CP	%	82	70-130	Pass	
Fluorene	M23-Ma0033629	CP	%	96	70-130	Pass	
Indeno(1.2.3-cd)pyrene	M23-Ma0033629	CP	%	90	70-130	Pass	
Naphthalene	M23-Ma0033629	CP	%	88	70-130	Pass	
Phenanthrene	M23-Ma0033629	CP	%	102	70-130	Pass	
Pyrene	M23-Ma0033629	CP	%	85	70-130	Pass	
Spike - % Recovery	IVI23-IVIA0033029	CF	70	00	70-130	Fass	
Organochlorine Pesticides				Result 1			
Chlordanes - Total	M23-Ma0033629	CP	%	84	70-130	Pass	
4.4'-DDD	M23-Ma0033629	CP	%	70	70-130	Pass	
4.4'-DDE	M23-Ma0033629	CP	%	77	70-130	Pass	
4.4'-DDT	M23-Ma0033629	CP	%	100	70-130	Pass	
		CP					
a-HCH	M23-Ma0033629 M23-Ma0033629	CP CP	% %	74	70-130	Pass	
Aldrin	M23-Ma0033629 M23-Ma0033629	CP CP	% %	91	70-130	Pass	
b-HCH	<u> </u>	CP CP		90	70-130	Pass	
d-HCH	M23-Ma0033629	CP CP	%	76	70-130	Pass	
Dieldrin Endacultan I	M23-Ma0033629	_	%	91	70-130	Pass	
Endosulfan I	M23-Ma0033629	CP	%	70	70-130	Pass	
Endosulfan II	M23-Ma0033629	CP	%	82	70-130	Pass	
Endosulfan sulphate	M23-Ma0033629	CP	%	84	70-130	Pass	
Endrin	M23-Ma0033629	CP	%	73	70-130	Pass	
Endrin aldehyde	M23-Ma0033629	CP	%	82	70-130	Pass	
Endrin ketone	M23-Ma0033629	CP	%	81	70-130	Pass	

Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
g-HCH (Lindane)	M23-Ma0033629	CP	%	84			70-130	Pass	
Heptachlor	M23-Ma0033629	CP	%	77			70-130	Pass	
Heptachlor epoxide	M23-Ma0033629	CP	%	88			70-130	Pass	
Hexachlorobenzene	M23-Ma0033629	CP	%	79			70-130	Pass	
Methoxychlor	M23-Ma0033629	CP	%	82			70-130	Pass	
Spike - % Recovery									
Polychlorinated Biphenyls				Result 1					
Aroclor-1016	M23-Ma0033629	CP	%	84			70-130	Pass	
Aroclor-1260	M23-Ma0033629	СР	%	94			70-130	Pass	
Spike - % Recovery									
Phenols (Halogenated)				Result 1					
2-Chlorophenol	M23-Ma0033629	СР	%	48			30-130	Pass	
2.4-Dichlorophenol	M23-Ma0033629	СР	%	54			30-130	Pass	
2.4.5-Trichlorophenol	M23-Ma0033629	СР	%	58			30-130	Pass	
2.4.6-Trichlorophenol	M23-Ma0033629	СР	%	49			30-130	Pass	
2.6-Dichlorophenol	M23-Ma0033629	СР	%	54			30-130	Pass	
4-Chloro-3-methylphenol	M23-Ma0033629	СР	%	58			30-130	Pass	
Pentachlorophenol	M23-Ma0033629	СР	%	31			30-130	Pass	
Tetrachlorophenols - Total	M23-Ma0033629	СР	%	33			30-130	Pass	
Spike - % Recovery									
Phenols (non-Halogenated)				Result 1					
2-Cyclohexyl-4.6-dinitrophenol	M23-Ma0033629	СР	%	85			30-130	Pass	
2-Methyl-4.6-dinitrophenol	M23-Ma0033629	СР	%	48			30-130	Pass	
2-Nitrophenol	M23-Ma0033629	СР	%	42			30-130	Pass	
2.4-Dimethylphenol	M23-Ma0033629	СР	%	53			30-130	Pass	
2.4-Dinitrophenol	M23-Ma0033629	СР	%	46			30-130	Pass	
2-Methylphenol (o-Cresol)	M23-Ma0033629	СР	%	46			30-130	Pass	
3&4-Methylphenol (m&p-Cresol)	M23-Ma0033629	СР	%	48			30-130	Pass	
Dinoseb	M23-Ma0033629	СР	%	49			30-130	Pass	
Phenol	M23-Ma0033629	СР	%	44			30-130	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate									
				Result 1	Result 2	RPD			
Fluoride	M23-Ma0033629	СР	mg/L	< 0.5	< 0.5	<1	30%	Pass	
Duplicate									
				Result 1	Result 2	RPD			
Fluoride	M23-Ma0033630	СР	mg/L	< 0.5	< 0.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime No Some samples have been subcontracted No

Qualifier Codes/Comments

Code Description

F2 is determined by arithmetically subtracting the "naphthalene" value from the ">C10-C16" value. The naphthalene value used in this calculation is obtained from volatiles (Purge & Trap analysis).

N01

Where we have reported both volatile (P&T GCMS) and semivolatile (GCMS) naphthalene data, results may not be identical. Provided correct sample handling protocols have been followed, any observed differences in results are likely to be due to procedural differences within each methodology. Results determined by both techniques have passed all QAQC acceptance criteria, and are entirely technically valid.

N02

F1 is determined by arithmetically subtracting the "Total BTEX" value from the "C6-C10" value. The "Total BTEX" value is obtained by summing the concentrations of BTEX analytes. The "C6-C10" value is obtained by quantitating against a standard of mixed aromatic/aliphatic analytes. N04

Please note:- These two PAH isomers closely co-elute using the most contemporary analytical methods and both the reported concentration (and the TEQ) apply specifically to the total of the two co-eluting PAHs N07

Authorised by:

Harry Bacalis Analytical Services Manager Caitlin Breeze Senior Analyst-Inorganic Carroll Lee Senior Analyst-Volatile Emily Rosenberg Senior Analyst-Metal Harry Bacalis Senior Analyst-Volatile Joseph Edouard Senior Analyst-Organic Senior Analyst-Volatile Joseph Edouard Mary Makarios Senior Analyst-Inorganic Mary Makarios Senior Analyst-Metal

General Manager

Final Report - this report replaces any previously issued Report

- Indicates Not Requested

* Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

Report Number: 971775-W

(m)	ETRA TECH		Consigning Off	ice:	Newtown												
	OFFEY		Report Results	to:	Jamie Ro	odden	Mot	oile:				040865	1268	Em	nail:	ja	amie.rodden@tetratech.com
					Bryden	Tiddy					04094	00219				k	oryden.tiddy@tetratech.com
					Ed Gri	nter											ed.grinter@tetratech.com
			Invoices to:		Lisa Marnell		Pho	ne:				9406 1	.000	Em	ail:		
Project No:	754-MELEN215878	Task No:										An	alysis	Reque	st Section	on	
Project Name:	Marinus Link - Heybridge	Laboratory:	Eurofins, ALS														NOTEC
Sampler's Name		Project Manager	;		Bryden Tiddy				>	Screen					11		NOTES
	if different to current quoted prices):								PA -	t Scr	_×						
Special Instructi	ons: Please forward	samples QC02, QC0	4, QC06 and QC	08 to ALS. Pleas	se relabel HEY_SW3 to	HEYSW1		ఠ	EXN,	ic EPA Short EPA Acreen)	C6-C10+BTEX						
	T T		7				멸	무	1/ BT (8 in	EPA A Acı	1 5						
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	CrS Suite	ASS field Test	B7: TRH/ BTEXN/ PAH/ Metals (8 inc Hg)	R6: Vic EPA Short (Tas EPA Acreen)	TRH C6		НОГР				
	HEY7_0.0-0.2	8.3.2023	AM	S	1Z	Standard	1	Х									
	HEY7_0.5-0.6	8.3.2023	AM	S	1 Z	Standard		Х								-1-	
	QC01	8.3.2023	AM	S	1Z	Standard		Х								1	
	QC02	8.3.2023	AM	S	1Z	Standard		Х									Please forward to ALS
	HEY7_0.9-1.0	8.3.2023	AM	S	1 Z	Standard		х									
	HEY7_1.4-1.5	8.3.2023	AM	S	1 Z	Standard	х										20.00
	HEY8_0.0-0.3	8.3.2023	AM	S	1 Z	Standard		Х									401/115
	HEY8_0.4-0.5	8.3.2023	AM	S	1Z	Standard		Х									AT CITY OF
	HYE8_0.6-0.7	8.3.2023	AM	S	1Z	Standard		Х									11.11
	HEY8_0.9-1.0	8.3.2023	AM	S	1Z	Standard		Х									Migh
	HEY8_1.3-1.4	8.3.2023	AM	S	1Z	Standard	Х										14/5/25
	HEY6_0.1-0.3	8.3.2023	AM	S	1Z	Standard		Х									1 (// 0 /
	QC03	8.3.2023	AM	S	1Z	Standard		Х									
	QC04	8.3.2023	AM	S	1Z	Standard		Х									Please forward to ALS
	HEY6_0.4-0.5 ×	8.3.2023	AM	S	1Z	Standard		Х									
	HEY6_0.9-1.0	8.3.2023	AM	S	1Z	Standard		Х									
	HEY6_1.4-1.5	8.3.2023	AM	S	1Z, 1J	Standard	Х										

Page of	
---------	--

HEY5_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		Х					
HEY5_0.4-0.5	8.3.2023	PM	S	1 Z	Standard		х					
HEY5_0.9-1.0	8.3.2023	PM	S	1 Z	Standard		х					
HEY5_1.4-1.5	8.3.2023	PM	S	1 Z	Standard		х					
HEY4_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		х					
HEY4_0.4-0.5	8.3.2023	PM	S	1 Z	Standard		х					
HEY4_0.9-1.0	8.3.2023	Ρ M	S	1Z, 1J	Standard	Х						
HEY4_1.4-1.5	8.3.2023	PM	S	1Z	Standard	х						
HEY3_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		х					
HEY3_0.4-0.5 *	8.3.2023	PM	S	1 Z	Standard	Х						
HEY3_0.9-1.0	8.3.2023	PM	S	1 Z	Standard	х						
HEY3_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	х						
QC05	8.3.2023	PM	S	1 Z	Standard	х						
QC06	8.3.2023	PM	S	17	Standard	х						Please forward to ALS
HEY2_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		х			11		Trease territare to risk
HEY2_0.4-0.5	8.3.2023	PM	S	17	Standard		х					1111111
HEY2_1.4-1.5	8.3.2023	PM	S	1Z	Standard	х						1 1 49/1/01
HEY1_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		х					The state of
HE¥1_0.4-0.5	8.3.2023	PM	S	17	Standard		х			1 1		
HEY1_0.9-1.0	8.3.2023	PM	S	1 Z	Standard	х						Mos
HEY1_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	х						14/3/2
HEY_SW2	8.3.2023	PM	W	3p, 1a, 4v	Standard			Х				
HEY_SW3	8.3.2023	PM	W	3p, 1a, 4v	Standard			Х				Please relabel as HEY_SW1
QC09	8.3.2023	PΜ	W	3p, 1a, 4v	Standard			х				
QC10	8.3.2023	PM	W	3p, 1a, 4v	Standard			х	- 1			Please forward to ALS
RB01	8.3.2023	PM	W	3p, 1a, 2v	Standard			x				
TB01	8.3.2023	PM	W	2v	Standard				,			
SP2_01	8.3.2023	PM	S	1.1	Standard			Х	-1			
SP2_02	8.3.2023	PM	S	1J	Standard		x				++	
SP2_03	8.3.2023	PM	S	 1J	Standard		x					

Page ____ of ____

*Container Ty Sodium Thios	rpe & Preservation Codes: P - Pulfate, NP - No Preservative	,									
Company:		Time:		Company:		Time:			- 1	ab. Ref/Batch N	
Name:		Date:	→	Name:		Date:				ed Properly Chilfed	
Coffey		Time:		Company:		Time					ion is in Proper Order
Name:		Date:	·	Name:		Date:				II Samples Reci	ieved in Good Condition
	RELING	QUISHED BY			4f	RECEIVED BY	,		s	ample Receipt	Advice: (Lab Use Only)
	\E										
	QC08	8.3.2023	PM	S	1J	Standard	x				Please forward to ALS
	QC07	8.3.2023	PM	S	1J	Standard	x				14/5/25
	SP10_03	8.3.2023	PM	S	1J	Standard	x				1/17/12
	SP10_02	8.3.2023	PM	S	1 J	Standard	x				Mush
	SP10_01	8.3.2023	PM	S	1J	Standard		x			11/10/
	SP5_03	8.3.2023	PM	S	1J	Standard	x				1 1 4/1/2
	SP5_02	8.3.2023	PM	S	1J	Standard	x				-1.0100
	SP5_01	8.3.2023	PM	S	1J	Standard		x			
	SP9_04	8.3.2023	PM	S	1J	Standard	x				
	SP9_03	8.3.2023	PM	S	1J	Standard	x				
	SP9_02	8.3.2023	PM	S	1J	Standard	×	^			
	SP9_01	8.3.2023	PM	5	1J	Standard	X	x			
	SP8_02	8.3.2023	PM	5	1J	Standard					
	SP3_01 SP8_01	8.3.2023 8.3.2023	PM PM	S S	1J 1J	Standard Standard	x			-1-1-1	

Count

Price Per test

Tyrone Gowans

Savini Suduweli Kondage

Sent: From: Tuesday, 14 March 2023 12:05 PM

Subject: <u>...</u> FW: Heybridge Supplies Delivery #AU_CAU001_EnviroSampleVic

Attachments: 754-MELEN215878_ML_Heybridge_COC_20230308.xlsx

Flag Status: Follow Up Flag: Follow up Completed

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

Kind Regards,

Savini Suduweli

Mobile Phone: +61 3 8564 5051 : +61 447 222 760

: SaviniSuduweli@eurofins.com

From: Rodden, Jamie < JAMIE.RODDEN@tetratech.com>

Sent: Friday, 10 March 2023 9:06 AM

To: Savini Suduweli Kondage <SaviniSuduweli@eurofins.com>

Cc: Grinter, Ed <Ed.Grinter@tetratech.com>; Tiddy, Bryden <Bryden.Tiddy@tetratech.com>

Subject: RE: Heybridge Supplies Delivery

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Savini,

Please see attached COC for samples as mentioned below.

Please let us know any queries

Kind regards,

Jamie Rodden | MEarthSci | Environmental Scientist
Direct +61 39290 7137 | Business +61 4 5215 4600| Mobile +61 408 651 268 | jamie.rodden@tetratech.com

Tetra Tech Coffey | *Leading with Science*® 1/23 West Fyans Street, Newtown | Victoria 3220 | tetratech.com | tetratechcoffey.com

This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

5 Please consider the environment before printing Read more

90

-W.	ETRA TECH		Consigning Of	fice:	Newtown											(5)
	OFFEY		Report Result	s to:	Jamie Ro	odden	Mol	oile:				040865	1268	Email:		jamie.rougen@tetratech.com
					Bryden	Tiddy					0409	400219				bryden.tiddy@tetratech.com
					Ed Gri	nter										ed.grinter@tetratech.com
			Invoices to:		Lisa Marnell		Pho	ne:				9406	1000	Email:	6	7
Project No:	754-MELEN215878	Task No:					\top					Ar	alysis I	Request Se	ection	(0) ~
Project Name:	Marinus Link - Heybridge	Laboratory:	Eurofins, ALS								T		İΤ	İT	T	(1)
Sampler's Name	: Jamie Rodden	Project Manage	r:		Bryden Tiddy		1		_	u e u						NOTES
Quote number (if different to current quoted prices):								PAH/	Screen			1 1			4
Special Instruction	ons: Please forward:	samples QC02, QC0	4, QC06 and QC	08 to ALS. Pleas	se relabel HEY_SW3 to	HEYSW1	1	Ļ	XN/ Hg)	hort een)	E E					
								Tes	/ BTE 8 inc	PA S Acre	1 4					
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	CrS Suite	ASS field Test	B7: TRH/ BTEXN/ P Metals (8 inc Hg)	R6: Vic EPA Short S (Tas EPA Acreen)	TRH C6-C10+BTEX		НОГР			
	HEY7_0.0-0.2	8.3.2023	AM	S	17	Standard	1	X							+	
	HEY7_0.5-0.6	8.3.2023	AM	S	1 Z	Standard		х			Ħ					
	QC01	8.3.2023	AM	S	1 Z	Standard		Х								
	QC02	8.3.2023	AM	S	17	Standard		х			Н					Please forward to ALS
	HEY7_0.9-1.0	8.3.2023	AM	S	17	Standard		х			†	_				Trease forward to ALS
	HEY7_1.4-1.5	8.3.2023	AM	S	1 Z	Standard	х				H					
	HEY8_0.0-0.3	8.3.2023	AM	S	1Z	Standard		х			Ħ				1	
	HEY8_0.4-0.5	8.3.2023	AM	S	1 Z	Standard		х								
	HYE8_0.6-0.7	8.3.2023	AM	S	1 Z	Standard		х								
	HEY8_0.9-1.0	8.3.2023	AM	S	1 Z	Standard		х								
	HEY8_1.3-1.4	8.3.2023	AM	S	1Z	Standard	х									
	HEY6_0.1-0.3	8.3.2023	AM	S	1Z	Standard		х								
	QC03	8.3.2023	AM	S	1 Z	Standard		х								
	QC04	8.3.2023	AM	S	17	Standard		Х			H					Please forward to ALS
	HEY6_0.4-0.5 /	8.3.2023	AM	S		Standard		Х								1 ICase forward to ALS
	HEY6_0.9-1.0	8.3.2023	AM	S		Standard		X								
	HEY6_1.4-1.5	8.3.2023	AM	S		Standard	х									

#47/175 Maddl 14/3

CHAIN-OF-CUSTODY	AND A	ANALYSIS	REQUEST
------------------	-------	----------	---------

	Tumm a a a a a						_						(5)
I	HEY5_0.0-0.2	8.3.2023	PM	S	1Z	Standard		Х				100	
	HEY5_0.4-0.5	8.3.2023	ΡM	S	17	Standard		Х				1(((0)
	HEY5_0.9-1.0	8.3.2023	PM	S	17	Standard		х					0/0
1	HEY5_1.4-1.5	8.3.2023	PM	S	1 Z	Standard		х					60
	HEY4_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		х					
	HEY4_0.4-0.5	8.3.2023	PM	S	1Z	Standard		х					
	HEY4_0.9-1.0	8.3.2023	PM	S	1Z, 1J	Standard	Х						
	HEY4_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	Х						
	HEY3_0.0-0.2	8.3.2023	PM	S	17	Standard		х					
	HEY3_0.4-0.5 *	8.3.2023	PΜ	S	17	Standard	х					++	
	HEY3_0.9-1.0	8.3.2023	PM	S	1Z	Standard	Х						
	HEY3_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	х						
	QC05	8.3.2023	PM	S	1Z	Standard	х						
	QC06	8.3.2023	PM	S	17	Standard	х			11			Please forward to ALS
	HEY2_0.0-0.2	8.3.2023	PM	S	1 Z	Standard		х					Flease fol Ward to ALS
	HEY2_0.4-0.5	8.3.2023	PM	S	17	Standard		x					
	HEY2_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	Х				+	++-	
	HEY1_0.0-0.2	8.3.2023	PM	S	1Z	Standard		x	-		+ + -	1 1	
	HEV1_0.4-0.5	8.3.2023	PM	S	17	Standard		X				1 1 -	
	HEY1_0.9-1.0	8.3.2023	PM	S	17	Standard	X						
	HEY1_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	х						
	HEY_SW2	8.3.2023	PM	W	3p, 1a, 4v	Standard			Х			1 1	
	HEY_SW3	8.3.2023	PM	W	3p, 1a, 4v	Standard			X			-	Diago reighal on UEV CW4
	QC09	8.3.2023	PM	W	3p, 1a, 4v	Standard			X		1-1-1		Please relabel as HEY_SW1
	QC10	8.3.2023	PM	W	3p, 1a, 4v	Standard			X				Diagon forward to ALC
	RB01	8.3.2023	PM	W	3p, 1a, 2v	Standard	Н		x		1 1		Please forward to ALS
	TB01	8.3.2023	PM	W	2v	Standard	Н		^_	x			
	SP2_01	8.3.2023	PM	S	1J	Standard			X	1^			
	SP2_02	8.3.2023	PM	S	1J	Standard	\vdash		^_		+-+-		110100
	SP2_03	8.3.2023	PM	S	1)	Standard	Н	X				 11	F4/1/1
	Jo. 2_65	5.5.2025	1 141	3	11)	Standard		x		1_1_	$\perp \perp \perp$	1	1 1/62
												X	Mossilla
													14/3
Chain of o	custoay												

*Container Typ	oe & Preservation Codes: P - Pl		Jar, V-Vial, Z -			erved, C - Hydrochloric Acid Pre		huric Acid Preserve	d, I - Ice, ST		atti NU,			
Company:		Time:		Compan	v:	Time				Lab. Ref/B		Г	iy Crimed	1
Name:		Date:		Name:		Date			_	Samples R				
Coffey		Time:		Compan	v;	Time				1			oper Order	
Name:		Date:		Name:		Date				1		•	ood Condition	
	RELINQ	UISHED BY				RECEIVED BY	,			Sample Re	ceipt Ad	vice: (Lab Use Only)	
	7.0 2.0												1 10230 1	orward to ALS
	QC08	8.3.2023	PM	S	1 J	Standard	x						Please f	orward to ALS
	QC07	8.3.2023	PM	S	1J	Standard	x							
	SP10_03	8.3.2023	PM	S	1J	Standard	x					\vdash		
	SP10_02	8.3.2023	PM	S	1)	Standard	x	^			-	+		
	SP10_01	8.3.2023	PM	5	1)	Standard		x	-	+++				
	SP5_03	8.3.2023	PM	S	1J	Standard	×				-	+		
	SP5_02	8.3.2023	PM	S	1)	Standard		X				\vdash		
	SP5_01	8.3.2023	PM	S	1J 1J	Standard Standard	X		++	+++		\vdash		
	SP9_04	8.3.2023	PM	S S	1)	Standard	X		++	+		\Box		4
	SP9_03	8.3.2023	PM PM	S	1J	Standard	X			\square		1-1		/
-	SP9_01 SP9_02	8.3.2023 8.3.2023	PM	S	1J	Standard		X				1		V
	SP8_02	8.3.2023	PM	S	1J	Standard	X			$\perp \perp \mid$	- 6	10	01/5	
	SP8_01	8.3.2023	PM	S	1J	Standard	Х				-16	V		
		8.3.2023	PM	S	1J	Standard	X							

Count

Price Per test

#97175 Mall 14/3

Project No: Project Name: Sampler's Name:	754-MELEN215878ML Taylors Road Landfill	Today	Report Result:	s to:	Jamie Ro Ed Grir		Mobile:		408651268	Email:		jamie.rodden@tetratech.co
Project Name:		Tarl Na	to reference to a		Ed Grir							
Project Name:		Tool Mo	t			nter	Mobile:		427202493	Email:		ed.grinter@tetratech.com
Project Name:		Tool No.	t		Bryden 1	Γiddy	Mobile:		427202493	Email:		bryden.tiddy@tetratech.com
Project Name:		To all Ma	Invoices to:		Lisa Marnell		Phone:			Email:		lisa.marnell@tetratech.com
1	Taylors Road Landfill	Task No:			301				A	nalysis Request Se	ction	The state of the s
Sampler's Name		Laboratory:	Eurofins, ALS					1 1				
To mpres o manner	Jamie Rodden	Project Manage	r:		Bryden Tiddy							
Quote number (if dif	ferent to current quoted prices):										1 1 1	
Special Instructions:												
	1						8					
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	Base					NOTES
14	EY7_0.0-0.2	813.23	AM	Soil	12	A 100	2					-
4	1EY 7- 0,5-0,6	1	i i	l i	1	The same of the sa	100					
G	₹CO1											
6	co2	1 1					J-					
+	EY7-0.9-1.0						ans					1011700
	1EY7_1.4-1.5.	1	}		12,17.		Cho					#9111/18
Ψ	EY 8-0.0-0.3		1- 1-		lz	İ	1.0					1 101
1	1EY8-014-015				Ī		2					Mithe
1	HEY 8-0,6-0.7		1 (9					10000
!	HEY8 - 0.9 - 1.0	1			\		1 1					16/2
	1EV 6-0.1-0.3			-	- 7		2					
	203	}		1			Det					
1 1	Qcou						12					
	RELINQUISHED BY		,	- '								
Name:		11.2 77		Name:	- 1	11-	RECEIVED BY	- A A			Advice: (Lab Use Or	••
Coffey Jam	re Nødden Date:	8.3.23	0.44	Company	kengs	6 0	73 /31	OH!			ieved in Good Condit	
Name:	Date:	7.50	() →	Name:		- Sin	Date:				ion is in Proper Order	
Company:	Time:			Company:			Time:				ed Properly Chilled	
*Container Type & P	reservation Codes: P - Plastic, G- Glass	Bottle, J - Glass Ja	ar, V- Vial, Z - Zi		litric Acid Preserved, C	- Hydrochloric A		huric Acid Preserve	ed, I - Ice, ST - Sodiu	Lab. Ref/Batch I	NO.	
Thiosulfate, NP - No I	Preservative											

Tahin Covin 9/3 11am led 9:3°

			Consigning Off	ice.	Newtown										
"Y4- T	ETRA TECH		Report Results		Jamie Ro	ddon	Mobile:		40865126	,	F	*1		t	and described to the second second
	OFFEY		перот пезана		Ed Grir						Ema				.rodden@tetratech.com
					Bryden 1		Mobile:		427202493	_	Ema				nter@tetratech.com
			Invesions to			ludy	Mobile:		427202493	3	Ema				ddy@tetratech.com
Desired No.	754 4451 549245070441	- 1	Invoices to:		<u>Lisa Marnell</u>		Phone:				Ema			lisa.mar	nell@tetratech.com
Project No:	754-MELEN215878ML	Task No:			301					Analy	sis Request	Section			
Project Name:	Taylors Road Landfill	Laboratory:	Eurofins, ALS												
Sampler's Name:		Project Manager	:		Bryden Tiddy										
Quote number (i	f different to current quoted prices):														
Special Instructio	ns:														
	Carrella ID	1		Matrix	Container Type &	T-A-T	1								
Lab Batch Ref	Sample ID	Sample Date	Time	(Soiletc)	Preservative*	(specify)									NOTES
	HEY6_0.4-0.5	8-3.23	AM	5	12										
	HEX6-0.9-1.0		())			0								
	HELL						9								
	HEY 6- 1.4-1.5			1 (1		N								
	HE75. 0.0-02	1 1	PM	1 1			\(\frac{7}{2} \)								,
	HE45-014-0,5)				3							1/1/	10177
	HEY5-0,9-1.0	1 1					Electronic					10		1	(((/)
					12 17		72							Y	11
	HEY5- 1.4-1.5	'	1	,	12,17		2							/	1 110
	MEY 4 - 0.0 - 0.2				12		12							1//	1 All
	HEY4-0.4-0.5				12		12							100	100
	HEY4- 0.9-1.0				12,19/12		Refe								
	HEY 4 = 1.4-1.5				· '										1-0
	•				17		×								1/5
	HEY3-0.0-0.2													\	/ /
	HEY3 - 0.4-0,5													_	
	RELINQUISHED BY						RECEIVED BY				Sample Rece	ipt Advice:	(Lab Use O	nly)	
Name:	Date:			Name:			Date:				All Samples	Recieved in	Good Condi	tion	
Coffey	efer pg/ Time:			Company:			Time:				All Documen	tation is in	Proper Orde	er	
Name:	Date:		→	Name:			Date:		-		Samples Rec	eived Prope	erly Chilled		
Company:	Time:			Company:			Time:				Lab. Ref/Bat	ch No.			
*Container Type	& Preservation Codes: P - Plastic, G- Glas	s Bottle, J - Glass Ja	ır, V- Vial, Z - Zi	plock bag, N - N	litric Acid Preserved, C	- Hydrochloric	Acid Preserved,	S - Sulphuric Aci	id Preserved, I - Ice, ST -	Sodium	1				
Thiosulfate, NP -	NO FIESEIVALIVE													la:	

			Consigning Off	ice:	Newtown											
TE T	ETRA TECH		Report Results	to:	Jamie Ro	dden	Mobile:			408651268		Е	mail:			jamie.rodden@tetratech.com
ب ب	OFFER				Ed Grir	nter	Mobile:			427202493		Ε	mail:			ed.grinter@tetratech.com
					Bryden 1	Γiddy	Mobile:			427202493		Е	mail:		b	yden.tiddy@tetratech.com
			Invoices to:		Lisa Marnell		Phone:					Е	mail:			isa.marnell@tetratech.com
Project No:	754-MELEN215878ML	Task No:			301						Analysis	Reque	st Section			
Project Name:	Taylors Road Landfill	Laboratory:	Eurofins, ALS													
Sampler's Name:	Jamie Rodden	Project Manage	r:		Bryden Tiddy											
	f different to current quoted prices):															
Special Instruction	ns:															
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)										NOTES
	HEY3 -0.9-10						×									.,
	HEY3 - 1.4-1.5						8									
	QCOS						(A)									1000
	Qc06				-		\(\bar{\bar{\bar{\bar{\bar{\bar{\bar{									can 11/S
	HEY2-0.0-0.2						tor								9	
	HE72-04-05						1 9								E	11299
	MEY2-1.4-1.5						0									Modera
	HEY1- 00-0.2															1116
	HEY1- 0.4-0.5						3									19/3
	MEY 1 - 0.9-1.0						Relev									
	HEY! - 1.4-1.5						×		4							
	RELINQUISHED BY						RECEIVED BY				Sa	mple R	eceipt Advic	e: (Lab Us	e Only)	
Name:	Date:			Name:			Date:						es Recieved		100	
Coffey PC	fer 19 Time:			Company:			Time:				All	Docum	entation is	n Proper (Order	
Name:	Date: Name:					Date:				Samples Received Properly Chilled						
				Company: Time:						Lab. Ref/Batch No.						
	Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Zi _l hiosulfate, NP - No Preservative				Nitric Acid Preserved, C	- Hydrochloric	Acid Preserve	d, S - Sulphuri	c Acid Preserv	ed, I - Ice, S T - So	dium					
mosunate, NP	140 1 1 C3CI VALIVE															

			Consigning Off	ice:	Newtown								
THE T	ETRA TECH		Report Results	to:	Jamie Rodder	n	Mobile:	408651268		Email:	lamie	.rodden@tetratech.com	
	OFFEY				Ed Grinter		Mobile:	427202493		Email:		ter@tetratech.com	
					Bryden Tiddy		Mobile:	427202493		Email:		ddy@tetratech.com	
			Invoices to:		Lisa Marnell		Phone:			Email:		nell@tetratech.com	
Project No:	754-MELEN215878ML	Task No:			301				Analys	sis Request Section			
Project Name:	Taylors Road Landfill	Laboratory:	Eurofins, ALS						T				
Sampler's Name:	Jamie Rodden	Project Manager	7:		Bryden Tiddy								
Quote number (ii	different to current quoted prices):												
Special Instructio	ns:												
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix	"	T-A-T						NOTES	
		Sumple Succ		(Soiletc)		(specify)						NOTES	
	HEY_SW2	8 3.23	pm	W	3p, 1A, 4V		COC						
		1 1		1	1						alas c	alianie	
	HEY-SW3	1 1			1 1		ramic				pleas	e change ple name n HEY_SW3 n HEY_SW1	
		1 1					ģ				Sem	alex SUB	
											1 mon	1 715/2500	
	0						Elec				1 70	HE9-3WI	
	QCOQ						9						
	QC10				<u> </u>		1				7 7	—	
					3. 14 2v						HE 4	11170	
	RBOI				30, 1A,2V		2					(1/(1), 1)	
		1 1			2 v	- 1	75					11	
	TBOI	1		l l		- 1	2					1 11	
						- 1	:====				1 1/0	with	
					14	- 1					1	1.00 .	
												1/2	
	RELINQUISHED BY						COUNTY DA		1			47	
Name:	Date:			Name			RECEIVED BY		-	Sample Receipt Advice: (I			
Coffey P	efer pg1 Time:			Name:			Date:		- 1	All Samples Recieved in Go			
	- U			Company:			Time:			All Documentation is in Pro			
				Name: Date: Company: Time:						Samples Received Properly Chilled			
Company: *Container Type	Time: & Preservation Codes: P - Plastic, G- Glas	s Bottle, J - Glass I	ar. V - Vial. 7 - 7i	Company:	litric Acid Preserved C - Hud			- Sulphuric Acid Preserved Lalco ST - St		Lab. Ref/Batch No.			
Thiosulfate, NP -				2.5 5K 10 6B) 14 - 1	Title Flore Frederice, & Friyo	nocinone Ac	au i reserveu, s	- Jaiphane Acia Fieberrea, 1 - 10e, 31 - 31	oululli				

			Consigning Off	ice:	Newtown									
TE	ETRA TECH		Report Results	to:	Jamie Ro	dden	Mobile:		408651268		mail:			jamie.rodden@tetratech.com
					Ed Grin	ter	Mobile:		427202493	6	mail:			ed.grinter@tetratech.com
					Bryden T	iddy	Mobile:		427202493	E	mail:		bn	yden.tiddy@tetratech.com
			Invoices to:		<u>Lisa Marnell</u>		Phone:				mail:		<u>li</u>	sa.marnell@tetratech.com
Project No:	754-MELEN215878ML	Task No:			301					nalysis Reque	est Section			
Project Name: Sampler's Name: Quote number (if Special Instructio	Taylors Road Landfill Jamie Rodden different to current quoted prices): ns:	Laboratory: Project Manager:	Eurofins, ALS		Bryden Tiddy									
Lab Batch Ref	Sample ID	5ample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)								NOTES
	Sp2-01 Sp2-02 Sp2-03 Sp3-01 Sp8-01 Sp8-02 Sp9-02 Sp9-02 Sp9-04 Sp9-04 Sp5-01 Sp5-02	8.3.23	pm	物5			please lefer to Etechanic roc						#	14/3
	RELINQUISHED BY						RECEIVED BY			Sample F	Receipt Advice	: (Lab Use	Only)	
Name: Red	10.1. 10.1			Name: Date:							es Recieved in			
				Company:			Time:			_	nentation is in			_
Company: Time:				Name: Date: Company: Time: 2 - Ziplock bag, N - Nitric Acid Preserved, C - Hydrochloric Acid Preserved, 5 - Sulphuric Acid Preserved, 1 - Ice, ST - Sodiun					Samples Received Properly Chilled Lab. Ref/Batch No.					
Thiosulfate, NP -		Bottle, J - Glass Ja	r, V- Vial, Z - Zi	olock bag, N - N	itric Acid Preserved, C	- Hydrochloric A	cid Preserved, 5	- Sulphuric Acid Pr	eserved, I - Ice, ST - Sodi	um			L	

			Consigning Off	ice:	Newtown												
TE	ETRA TECH		Report Results	to:	Jamie Ro	dden	Mobile:			408651	268		Email:				jamie.rodden@tetratech.com
					Ed Grin	iter	Mobile:			427202	493		Email:				ed.grinter@tetratech.com
					Bryden 7	iddy	Mobile:			427202	493		Email:			br	yden.tiddy@tetratech.com
			Invoices to:		<u>Lisa Marnell</u>		Phone:						Email:			<u>di</u>	sa.marnell@tetratech.com
Project No:	754-MELEN215878ML	Task No:			301						Ana	ysis Requ	uest Sec	tion			
Project Name:	Taylors Road Landfill	Laboratory:	Eurofins, ALS														
Sampler's Name:	Jamie Rodden	Project Manager	:		Bryden Tiddy			1 1									
Quote number (if	different to current quoted prices):							1 1									
Special Instructio	ns:							-									
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	1										NOTES
	Sp5-03	8.3.23	pm	5	10		0										
	SP10-01)	1		1		99										
	SP10-01 SP10-02 SP10-03															1	2611750
	Sp10-02						\(\(\) \(\)									4	(1/1)
	5010-03	1 1			(HONIC									= 1	. 21
		4	l l		L		13										1/1/1/
							Elec										March
							a									1	Mach
							7										
							2	1 1									16/7
							7	1 1									1-1/5
							10										
							ease										
							0										
	•						9										
	RELINQUISHED BY					A	RECEIVED BY				- h-	Sample	Receipt	Advice:	(Lab Use	Only)	
Name: 1	Date Date			Name:			Date:					All Sam	ples Reci	eved in G	Good Cond	dition	
Coffey Time: Name: Company:												roper Ord					
Name:	Date		→	Name:							Samples Received Properly Chilled						
Company:	·Time	:		Company: Time:						Lab. Ref/Batch No.							
*Container Type & Preservation Codes: P - Plastic, G- Glass Bottle, J - Glass Jar, V- Vial, Z - Zip				plock bag, N - N	litric Acid Preserved, C	- Hydrochloric A	cid Preserved, S	- Sulphurio	Acid Prese	erved, I - Ice, S	T - Sodium						
Thiosulfate, NP -	No Preservative															,	

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 **Sydney** 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091

Canberra

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Penrose, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Sample Receipt Advice

Company name:

Tetra Tech Coffey Pty Ltd VIC

Contact name:

Bryden Tiddy

Project name:

MARINUS LINK - HYPERBRIDGE

Project ID:

754-MELEN215878

Turnaround time:

Date/Time received

Mar 10, 2023 9:06 AM

Eurofins reference

971775

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- X All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Necessary sampling information not provided, the Laboratory will not be responsible for compromised results NB should testing be performed outside recommended holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

SAMPLES OUT OF HOLDING TIME FOR ASS FIELD TESTING. SAMPLE HEY6_0.1-0.3 RECEIVED AS 0.0-0.3. 2 BAGS RECEVIED FOR HEY4_0.4-0.5 AND SAMPLE HEY3_0.4-0.5 NOT RECEIVED. (POSSIBLY 1 IS MĪSLABELLED) SAMPLE HEY2_0.4-0.5 RECEIVED AS 0.6-0.7 AND SAMPLE HEY1_0.4-0.5 RECEIVED AS 0.4-0.7

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Bryden Tiddy - bryden.tiddy@coffey.com.

Note: A copy of these results will also be delivered to the general Tetra Tech Coffey Pty Ltd VIC email address.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Canberra Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Perth

ABN: 91 05 0159 898

46-48 Banksia Road

NZBN: 9429046024954 Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston,

Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name

Tetra Tech Coffey Pty Ltd VIC

Southbank

Order No.: Report #:

Tel: +61 2 6113 8091

971775

03 9290 7000

Phone: Fax:

Received: Mar 10, 2023 9:06 AM

Auckland

Penrose,

Auckland 1061

IANZ# 1327

Tel: +64 9 526 45 51

Due: Mar 20, 2023 **Priority:** 5 Day

Contact Name: Bryden Tiddy

Eurofins Analytical Services Manager: Savini Suduweli

Company	ivaille.
Address:	

Project Name:

Level 11, 2 Riverside Quay,

VIC 3006

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878

		Sa		HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH		
Melb	ourne Laborato	ory - NATA # 12	61 Site # 12		Х			Х	Х	Х	Х	Х	
	bane Laborator		1 Site # 2079	94			Х	Х	Х	Х			
	rnal Laboratory			1	1								
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID								
1	HEY7_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033594		Х						
2	HEY7_0.5-0.6	Mar 08, 2023		Soil	M23-Ma0033595		Х						
3	QC01	Mar 08, 2023		Soil	M23-Ma0033596		Х						
4	HEY7_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033597		Х						
5	HEY7_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033598			Х		Х			
6	HEY8_0.0-0.3	Mar 08, 2023		Soil	M23-Ma0033599		Х						
7	HEY8_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033600		Х						\sqcup
8	HEY8_0.6-0.7	Mar 08, 2023		Soil	M23-Ma0033601		Х						\sqcup
9	HEY8_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033602		Х						\sqcup
10	HEY8_1.3-1.4	Mar 08, 2023		Soil	M23-Ma0033603			Х		Х			\sqcup
11	HEY6_0.0-0.3	Mar 08, 2023		Soil	M23-Ma0033604		Х						\sqcup
12	QC03	Mar 08, 2023		Soil	M23-Ma0033605		Х						

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Brisbane Canberra Unit 1.2 Dacre Street Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 6113 8091

Newcastle 1/21 Smallwood Place

1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448 NATA# 1261

Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289 NATA# 2377 Site# 2370

Perth

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Penrose, Rolleston, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Company Name:

Tetra Tech Coffey Pty Ltd VIC

Address: Level 11, 2 Riverside Quay, Southbank

VIC 3006

Project Name: Project ID:

MARINUS LINK - HYPERBRIDGE

754-MELEN215878

Order No.: Report #:

971775 03 9290 7000

Phone: Fax:

Received: Mar 10, 2023 9:06 AM Due: Mar 20, 2023

ABN: 91 05 0159 898

46-48 Banksia Road

Priority: 5 Day

Contact Name: Bryden Tiddy

Eurofins Analytical Services Manager: Savini Suduweli

		Sa	mple Detail			HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH	
Melk	ourne Laborato	ory - NATA # 12	61 Site # 12	54		Х			Х	Х	Х	Х	Х	
Bris	bane Laboratory	y - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х				
13	HEY6_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033606		Х							
14	HEY6_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033607		Х							
15	HEY6_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033608			Х		Х				
16	HEY5_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033609		Х							
17	HEY5_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0033610		Х							
18	HEY5_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033611		Х							
19	HEY5_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033612		Х							
20	HEY4_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033613		Х							
21	HEY4_0.4-0.5 (A)	Mar 08, 2023		Soil	M23-Ma0033614		Х							
22	HEY4_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033615			Х		Х				
23	HEY4_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033616			Х		Х				
24	HEY3_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033617		Х							
25	HEY3_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033618			Х		Х				
26	HEY3_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033619			Х		Х				

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 6113 8091

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Auckland 46-48 Banksia Road 35 O'Rorke Road Welshpool Penrose, WA 6106 Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51

ABN: 91 05 0159 898

NATA# 2377 Site# 2370

Perth

Received:

Priority:

Contact Name:

Due:

IANZ# 1327

Mar 20, 2023

Bryden Tiddy

NZBN: 9429046024954

Mar 10, 2023 9:06 AM

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Tetra Tech Coffey Pty Ltd VIC

Address: Level 11, 2 Riverside Quay,

Southbank VIC 3006

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878 Order No.:

Phone: Fax:

Report #:

03 9290 7000

971775

Eurofins Analytical Services Manager: Savini Suduweli

5 Dav

	Sample Detail Sample Detail								Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Mell	ourne Laborato	Х			Х	Х	Х	Х	Х				
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х			
27	QC05	Mar 08, 2023		Soil	M23-Ma0033620			Х		Х			
28	HEY2_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033621		Х						
29	HEY2_0.6-0.7	Mar 08, 2023		Soil	M23-Ma0033622		Х						
30	HEY2_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033623			Х		Х			
31	HEY1_0.0-0.2	Mar 08, 2023		Soil	M23-Ma0033624		Х						
32	HEY1_0.4-0.7	Mar 08, 2023		Soil	M23-Ma0033625		Х						
33	HEY1_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0033626			Х		Х			
34	HEY1_1.4-1.5	Mar 08, 2023		Soil	M23-Ma0033627			Х		Х			
35	HEY_SW2	Mar 08, 2023		Water	M23-Ma0033628						Х		
36	HEY_SW1	Mar 08, 2023		Water	M23-Ma0033629						Х		
37	QC09	Mar 08, 2023		Water	M23-Ma0033630						Х		
38	RB01	Mar 08, 2023		Water	M23-Ma0033631						Х		
39	TB01	Mar 08, 2023		Water	M23-Ma0033632								Х
40	SP2_01	Mar 08, 2023		Soil	M23-Ma0033633				Х		Х		
41	SP2_02	Mar 08, 2023		Soil	M23-Ma0033634				Х			Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 NATA# 1261

Mayfield West NSW 2304 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51 NATA# 2377 Site# 2370 IANZ# 1327

ABN: 91 05 0159 898

Perth

Due:

Priority:

Contact Name:

Welshpool

WA 6106

NZBN: 9429046024954

Mar 10, 2023 9:06 AM

Mar 20, 2023

Bryden Tiddy

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Project Name:

Address:

Tetra Tech Coffey Pty Ltd VIC

Level 11, 2 Riverside Quay, Southbank

VIC 3006

MARINUS LINK - HYPERBRIDGE

Project ID: 754-MELEN215878 Order No.: Received:

Phone: Fax:

Report #:

Tel: +61 2 6113 8091

03 9290 7000

971775

Eurofins Analytical Services Manager: Savini Suduweli

5 Dav

	Sample Detail Melbourne Laboratory - NATA # 1261 Site # 1254								Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Melk	ourne Laborato	Х			Х	Х	Х	Х	Х				
Bris	bane Laborator	y - NATA # 126	1 Site # 2079	94			Х	Х	Х	Х			
42	SP2_03	Mar 08, 2023		Soil	M23-Ma0033635				Х			Х	
43	SP3_01	Mar 08, 2023		Soil	M23-Ma0033636				Х			Х	
44	SP8_01	Mar 08, 2023		Soil	M23-Ma0033637				Х			Х	
45	SP8_02	Mar 08, 2023		Soil	M23-Ma0033638				Х			Х	
46	SP9_01	Mar 08, 2023		Soil	M23-Ma0033639				Х		Х		
47	SP9_02	Mar 08, 2023		Soil	M23-Ma0033640				Х			Х	
48	SP9_03	Mar 08, 2023		Soil	M23-Ma0033641				Х			Х	
49	SP9_04	Mar 08, 2023		Soil	M23-Ma0033642				Х			Х	
50	SP5_01	Mar 08, 2023		Soil	M23-Ma0033643				Х		Х		
51	SP5_02	Mar 08, 2023		Soil	M23-Ma0033644				Х			Х	
52	SP5_03	Mar 08, 2023		Soil	M23-Ma0033645				Х			Х	
53	SP10_01	Mar 08, 2023		Soil	M23-Ma0033646				Х		Х		
54	SP10_02	Mar 08, 2023		Soil	M23-Ma0033647				Х			Х	
55	SP10_03	Mar 08, 2023		Soil	M23-Ma0033648				Х			Х	
56	QC07	Mar 08, 2023		Soil	M23-Ma0033649				Х			Х	

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Phone:

Fax:

Canberra Brisbane Unit 1.2 Dacre Street 1/21 Smallwood Place Mitchell Murarrie ACT 2911 QLD 4172 Tel: +61 7 3902 4600 Tel: +61 2 6113 8091

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

ABN: 91 05 0159 898 NZBN: 9429046024954

> Auckland Christchurch 35 O'Rorke Road Penrose, Rolleston, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327

43 Detroit Drive Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Tetra Tech Coffey Pty Ltd VIC

Address:

Level 11, 2 Riverside Quay,

Southbank VIC 3006

Project Name: Project ID:

MARINUS LINK - HYPERBRIDGE

754-MELEN215878

Order No.: Received: Mar 10, 2023 9:06 AM Report #: 971775

Due: Mar 20, 2023 03 9290 7000 **Priority:** 5 Day

Perth

Welshpool

WA 6106

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Contact Name: Bryden Tiddy

Eurofins Analytical Services Manager: Savini Suduweli

San	nple Detail		HOLD	Acid Sulfate Soils Field pH Test	Chromium Reducible Sulfur Suite	Moisture Set	Moisture Set	Vic EPA Short Screen	Eurofins Suite B7	BTEXN and Volatile TRH
Melbourne Laboratory - NATA # 126	1 Site # 1254		Х			Х	Х	Х	Х	Х
Brisbane Laboratory - NATA # 1261	Site # 20794			Х	Х	Х	Х			
57 HEY4_0.4-0.5 Mar 08, 2023 (B)	Soil	M23-Ma0033692	Х							
Test Counts	Counts							8	13	1

Tetra Tech Coffey Pty Ltd VIC Level 11, 2 Riverside Quay, Southbank VIC 3006

NATA Accredited Accreditation Number 1261 Site Number 20794

Accredited for compliance with ISO/IEC 17025 – Testing NATA is a signatory to the ILAC Mutual Recognition Arrangement for the mutual recognition of the equivalence of testing, medical testing, calibration, inspection, proficiency testing scheme providers and reference materials producers reports and certificates.

Attention: Ed Grinter

Report 975268-S

Project name MARINUS LINK - HYPERBRIDGE

Project ID 754-MELEN215878
Received Date Mar 24, 2023

Client Sample ID			HEY7 0.9-1.0	HEY8 0.4-0.5	HEY8 0.9-1.0	HEY6 0.4-0.5
Sample Matrix			Soil	Soil	Soil	Soil
			M23-	M23-	M23-	M23-
Eurofins Sample No.			Ma0059840	Ma0059841	Ma0059842	Ma0059843
Date Sampled			Mar 08, 2023	Mar 08, 2023	Mar 08, 2023	Mar 08, 2023
Test/Reference	LOR	Unit				
Actual Acidity (NLM-3.2)						
pH-KCL (NLM-3.1)	0.1	pH Units	4.6	5.9	5.2	4.9
Titratable Actual Acidity (NLM-3.2)	2	mol H+/t	48	2.7	6.0	22
Titratable Actual Acidity (NLM-3.2)	0.003	% pyrite S	0.077	0.004	0.010	0.036
Potential Acidity - Chromium Reducible Sulfur						
Chromium Reducible Sulfur (s-SCr) (NLM-2.1) ^{S04}	0.005	% S	0.060	0.011	0.011	0.008
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	3	mol H+/t	37	7.1	6.6	5.1
Extractable Sulfur						
Sulfur - KCl Extractable	0.005	% S	N/A	N/A	N/A	N/A
HCI Extractable Sulfur	0.005	% S	N/A	N/A	N/A	N/A
Retained Acidity (S-NAS)						
Net Acid soluble sulfur (SNAS) NLM-4.1	0.005	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur (s-SNAS) NLM-4.1 ^{S02}	0.005	% S	N/A	N/A	N/A	N/A
Net Acid soluble sulfur (a-SNAS) NLM-4.1	2	mol H+/t	N/A	N/A	N/A	N/A
HCI Extractable Sulfur Correction Factor	1	factor	2.0	2.0	2.0	2.0
Acid Neutralising Capacity (ANCbt)						
Acid Neutralising Capacity - (ANCbt) (NLM-5.2)	0.01	% CaCO3	N/A	N/A	N/A	N/A
Acid Neutralising Capacity - (s-ANCbt) (NLM-5.2) ^{S03}	0.02	% S	N/A	N/A	N/A	N/A
Acid Neutralising Capacity - (a-ANCbt) (NLM-5.2)	2	mol H+/t	N/A	N/A	N/A	N/A
ANC Fineness Factor		factor	1.5	1.5	1.5	1.5
Net Acidity (Including ANC)		_				
CRS Suite - Net Acidity - NASSG (Including ANC)	0.02	% S	0.14	< 0.02	0.02	0.04
CRS Suite - Net Acidity - NASSG (Including ANC)	10	mol H+/t	85	< 10	13	27
CRS Suite - Liming Rate - NASSG (Including ANC) ^{S01}	1	kg CaCO3/t	6.4	< 1	< 1	2.1
Extraneous Material						
<2mm Fraction	0.005	g	46	86	73	61
>2mm Fraction	0.005	g	< 0.005	< 0.005	5.7	16
Analysed Material	0.1	%	100	100	93	80
Extraneous Material	0.1	%	< 0.1	< 0.1	7.2	20
Sample Properties						
% Moisture	1	%	15	4.2	5.2	6.5

Report Number: 975268-S

Sample History

Where samples are submitted/analysed over several days, the last date of extraction is reported.

If the date and time of sampling are not provided, the Laboratory will not be responsible for compromised results should testing be performed outside the recommended holding time.

Description	Testing Site	Extracted	Holding Time
Chromium Reducible Sulfur Suite			
Chromium Suite	Brisbane	Mar 27, 2023	6 Week
- Method: LTM-GEN-7070 Chromium Reducible Sulfur Suite			
Extraneous Material	Brisbane	Mar 27, 2023	6 Week
- Method: LTM-GEN-7050/7070			
% Moisture	Brisbane	Mar 24, 2023	14 Days

Report Number: 975268-S

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Brisbane 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

Eurofins ARL Pty Ltd Eurofins Environment Testing NZ Ltd

NZBN: 9429046024954

Auckland 35 O'Rorke Road Penrose, Auckland 1061 Tel: +64 9 526 45 51 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Tetra Tech Coffey Pty Ltd VIC

Address:

Level 11, 2 Riverside Quay,

Southbank VIC 3006

Project Name: MARINUS LINK - HYPERBRIDGE

Project ID:

754-MELEN215878

Order No.: Report #:

Canberra

Mitchell

ACT 2911

Unit 1.2 Dacre Street

Tel: +61 2 6113 8091

975268 03 9290 7000

Phone: Fax:

Received: Mar 24, 2023 4:33 PM Due: Mar 29, 2023

Priority: 2 Day **Contact Name:** Ed Grinter

ABN: 91 05 0159 898

46-48 Banksia Road

Tel: +61 8 6253 4444

NATA# 2377 Site# 2370

Perth

Welshpool

WA 6106

Eurofins Analytical Services Manager: Savini Suduweli

		Sa	mple Detail			Chromium Reducible Sulfur Suite	Moisture Set
Brisk	oane Laboratory	/ - NATA # 1261	1 Site # 2079	94		Χ	Х
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	HEY7_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0059840	Х	Х
2	HEY8_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0059841	Χ	Х
3	HEY8_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0059842	Χ	Х
4	HEY6_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0059843	Χ	Х
Test	Counts					4	4

Internal Quality Control Review and Glossary

General

- 1. Laboratory QC results for Method Blanks, Duplicates, Matrix Spikes, and Laboratory Control Samples follows guidelines delineated in the National Environment Protection (Assessment of Site Contamination) Measure 1999, as amended May 2013 and are included in this QC report where applicable. Additional QC data may be available on request.
- 2. All soil/sediment/solid results are reported on a dry basis, unless otherwise stated.
- 3. All biota/food results are reported on a wet weight basis on the edible portion, unless otherwise stated.
- 4. Actual LORs are matrix dependant. Quoted LORs may be raised where sample extracts are diluted due to interferences.
- 5. Results are uncorrected for matrix spikes or surrogate recoveries except for PFAS compounds
- 6. SVOC analysis on waters are performed on homogenised, unfiltered samples, unless noted otherwise
- 7. Samples were analysed on an 'as received' basis.
- 8. Information identified on this report with blue colour, indicates data provided by customer that may have an impact on the results.
- 9. This report replaces any interim results previously issued.

Holding Times

Please refer to 'Sample Preservation and Container Guide' for holding times (QS3001).

For samples received on the last day of holding time, notification of testing requirements should have been received at least 6 hours prior to sample receipt deadlines as stated on the SRA.

If the Laboratory did not receive the information in the required timeframe, and regardless of any other integrity issues, suitably qualified results may still be reported.

Holding times apply from the date of sampling, therefore compliance to these may be outside the laboratory's control.

For VOCs containing vinyl chloride, styrene and 2-chloroethyl vinyl ether the holding time is 7 days however for all other VOCs such as BTEX or C6-10 TRH then the holding time is 14 days.

Units

mg/kg: milligrams per kilogram mg/L: milligrams per litre µg/L: micrograms per litre

ppm: parts per million ppb: parts per billion %: Percentage

org/100 mL: Organisms per 100 millilitres NTU: Nephelometric Turbidity Units MPN/100 mL: Most Probable Number of organisms per 100 millilitres

CFU: Colony forming unit

Terms

APHA American Public Health Association

COC Chain of Custody

CP Client Parent - QC was performed on samples pertaining to this report
CRM Certified Reference Material (ISO17034) - reported as percent recovery

DryWhere a moisture has been determined on a solid sample the result is expressed on a dry basis.

Duplicate A second piece of analysis from the same sample and reported in the same units as the result to show comparison.

LOR Limit of Reporting

LCS Laboratory Control Sample - reported as percent recovery.

Method Blank

In the case of solid samples these are performed on laboratory certified clean sands and in the case of water samples these are performed on de-ionised water.

NCP

Non-Client Parent - QC performed on samples not pertaining to this report, QC is representative of the sequence or batch that client samples were analysed within.

RPD Relative Percent Difference between two Duplicate pieces of analysis.

SPIKE Addition of the analyte to the sample and reported as percentage recovery.

SRA Sample Receipt Advice

Surr - Surrogate The addition of a like compound to the analyte target and reported as percentage recovery.

TBTO Tributyltin oxide (bis-tributyltin oxide) - individual tributyltin compounds cannot be identified separately in the environment however free tributyltin was measured

and its values were converted stoichiometrically into tributyltin oxide for comparison with regulatory limits.

TCLP Toxicity Characteristic Leaching Procedure
TEQ Toxic Equivalency Quotient or Total Equivalence

QSM US Department of Defense Quality Systems Manual Version 5.4

US EPA United States Environmental Protection Agency

WA DWER Sum of PFBA, PFPeA, PFHxA, PFHpA, PFOA, PFBS, PFHxS, PFOS, 6:2 FTSA, 8:2 FTSA

QC - Acceptance Criteria

The acceptance criteria should be used as a guide only and may be different when site specific Sampling Analysis and Quality Plan (SAQP) have been implemented

RPD Duplicates: Global RPD Duplicates Acceptance Criteria is 30% however the following acceptance guidelines are equally applicable:

Results <10 times the LOR: No Limit

Results between 10-20 times the LOR: RPD must lie between 0-50%

Results >20 times the LOR: RPD must lie between 0-30% NOTE: pH duplicates are reported as a range not as RPD

Surrogate Recoveries: Recoveries must lie between 20-130% for Speciated Phenols & 50-150% for PFAS

PFAS field samples that contain surrogate recoveries in excess of the QC limit designated in QSM 5.4 where no positive PFAS results have been reported have been reviewed and no data was affected.

QC Data General Comments

- 1. Where a result is reported as a less than (<), higher than the nominated LOR, this is due to either matrix interference, extract dilution required due to interferences or contaminant levels within the sample, high moisture content or insufficient sample provided.
- 2. Duplicate data shown within this report that states the word "BATCH" is a Batch Duplicate from outside of your sample batch, but within the laboratory sample batch at a 1:10 ratio. The Parent and Duplicate data shown is not data from your samples.
- 3. pH and Free Chlorine analysed in the laboratory Analysis on this test must begin within 30 minutes of sampling. Therefore, laboratory analysis is unlikely to be completed within holding time. Analysis will begin as soon as possible after sample receipt.
- 4. Recovery Data (Spikes & Surrogates) where chromatographic interference does not allow the determination of recovery the term "INT" appears against that analyte
- 5. For Matrix Spikes and LCS results a dash "-" in the report means that the specific analyte was not added to the QC sample.
- 6. Duplicate RPDs are calculated from raw analytical data thus it is possible to have two sets of data.

Quality Control Results

Test			Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
LCS - % Recovery									
Actual Acidity (NLM-3.2)									
pH-KCL (NLM-3.1)		%	99			80-120	Pass		
Titratable Actual Acidity (NLM-3.2)			%	83			80-120	Pass	
LCS - % Recovery					1		T		
Potential Acidity - Chromium Redu									
Chromium Reducible Sulfur (s-SCr)	(NLM-2.1)		%	107			80-120	Pass	
LCS - % Recovery					1		1	Г	
Extractable Sulfur								_	
HCI Extractable Sulfur			%	98			80-120	Pass	
Test	Lab Sample ID	QA Source	Units	Result 1			Acceptance Limits	Pass Limits	Qualifying Code
Duplicate					,				
Actual Acidity (NLM-3.2)		1		Result 1	Result 2	RPD			
pH-KCL (NLM-3.1)	M23-Ma0059841	CP	pH Units	5.9	5.9	<1	20%	Pass	
Titratable Actual Acidity (NLM-3.2)	M23-Ma0059841	CP	mol H+/t	2.7	2.5	5.5	20%	Pass	
Titratable Actual Acidity (NLM-3.2)	M23-Ma0059841	CP	% pyrite S	0.004	0.004	5.5	30%	Pass	
Duplicate									
Potential Acidity - Chromium Redu	ıcible Sulfur	1		Result 1	Result 2	RPD			
Chromium Reducible Sulfur (s-SCr) (NLM-2.1)	M23-Ma0059841	СР	% S	0.011	0.010	<1	20%	Pass	
Chromium Reducible Sulfur (a-SCr) (NLM-2.1)	M23-Ma0059841	СР	mol H+/t	7.1	6.4	9.4	30%	Pass	
Duplicate					1		1	Г	
Extractable Sulfur		1		Result 1	Result 2	RPD			
Sulfur - KCl Extractable	M23-Ma0059841	CP	% S	N/A	N/A	N/A	30%	Pass	
HCI Extractable Sulfur	M23-Ma0059841	CP	% S	N/A	N/A	N/A	20%	Pass	
Duplicate									
Retained Acidity (S-NAS)				Result 1	Result 2	RPD			
Net Acid soluble sulfur (SNAS) NLM-4.1	M23-Ma0059841	СР	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (s-SNAS) NLM-4.1	M23-Ma0059841	СР	% S	N/A	N/A	N/A	30%	Pass	
Net Acid soluble sulfur (a-SNAS) NLM-4.1	M23-Ma0059841	СР	mol H+/t	N/A	N/A	N/A	30%	Pass	
Duplicate					I I				
Acid Neutralising Capacity (ANCbt Acid Neutralising Capacity -				Result 1	Result 2	RPD			
(ANCbt) (NLM-5.2) Acid Neutralising Capacity - (s-	M23-Ma0059841	CP	% CaCO3	N/A	N/A	N/A	20%	Pass	
ANCbt) (NLM-5.2) ANC Fineness Factor	M23-Ma0059841 M23-Ma0059841	CP CP	% S factor	N/A 1.5	N/A 1.5	N/A <1	30% 30%	Pass Pass	
Duplicate	0		140101	1.0		71	3370	, aoo	
Net Acidity (Including ANC)				Result 1	Result 2	RPD			
CRS Suite - Net Acidity - NASSG (Including ANC)	M23-Ma0059841	СР	% S	< 0.02	< 0.02	<1	30%	Pass	
CRS Suite - Net Acidity - NASSG (Including ANC)	M23-Ma0059841	CP	mol H+/t	< 10	< 10	<1	30%	Pass	
CRS Suite - Liming Rate - NASSG (Including ANC)	M23-Ma0059841	CP	kg CaCO3/t	< 1	< 1	<1	30%	Pass	
Duplicate		<u> </u>	3 3 4 5 6 6 1	, ,		7,			
Sample Properties				Result 1	Result 2	RPD	I		
% Moisture	M23-Ma0059843	СР	%	6.5	6.5	<1	30%	Pass	

Comments

Sample Integrity

Custody Seals Intact (if used) N/A Attempt to Chill was evident Yes Sample correctly preserved Yes Appropriate sample containers have been used Yes Sample containers for volatile analysis received with minimal headspace Yes Samples received within HoldingTime Yes Some samples have been subcontracted No

Qualifier Codes/Comments

<u> </u>	
Code	Description
Code	Describitori

Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil' multiply 'reported results' x 'wet bulk density of soil in t/m3'

S01

Retained Acidity is Reported when the pHKCl is less than pH 4.5 S02

S03 Acid Neutralising Capacity is only required if the pHKCl if greater than or equal to pH 6.5 S04 Acid Sulfate Soil Samples have a 24 hour holding time unless frozen or dried within that period

Authorised by:

Savini Suduweli Analytical Services Manager Senior Analyst-Sample Properties Jonathon Angell Jonathon Angell Senior Analyst-SPOCAS

Glenn Jackson **General Manager**

Final Report - this report replaces any previously issued Report

- Indicates Not Requested
- * Indicates NATA accreditation does not cover the performance of this service

Measurement uncertainty of test data is available on request or please click here.

Eurofins shall not be liable for loss, cost, damages or expenses incurred by the client, or any other person or company, resulting from the use of any information or interpretation given in this report. In no case shall Eurofins be liable for consequential damages including, but not limited to, lost profits, damages for failure to meet deadlines and lost production arising from this report. This document shall not be reproduced except in full and relates only to the items tested. Unless indicated otherwise, the tests were performed on the samples as received.

RE: Eurofins Test Results, Invoice - Report 971775 : Site MARINUS LINK - HYPERBRIDGE (754-MELEN215878)

Harry Bacalis < Harry Bacalis@eurofins.com>

Fri 3/24/2023 4:33 PM

To: Grinter, Ed <Ed.Grinter@tetratech.com>;Tiddy, Bryden <Bryden.Tiddy@tetratech.com>

Cc: Rodden, Jamie < JAMIE.RODDEN@tetratech.com > ; Savini Suduweli Kondage

<SaviniSuduweli@eurofins.com>;#AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com>

INFO: INTERNAL EMAIL - Sent from your own Eurofins email domain.

Thanks Ed

Tyrone – 2 DAY TAT – You will need to liaise with Brisbane regarding this one

Kind regards,

Harry Bacalis

Phone: +61 3 8564 5064 **Mobile:** +61 438 858 924

Email: HarryBacalis@eurofins.com

24/15 268 24/15/15

This e-mail including its attachments may contain confidential and proprietary information. Any unauthorized disclosure or use of this e-mail including its attachments is prohibited and may be prosecuted. If you are not the intended recipient, please inform the sender by an e-mail reply and delete the message. Transmission by e-mail is not secure and can result in errors or omissions in the content of the message. Despite state-of-the-art precautions we cannot guarantee that e-mails and attachments are free from viruses. We accept no liability for viruses or any transmission-related errors and omissions. You need to always virus-check any e-mails and attachments.

Eurofins companies are independent legal entities that are bound only by members of their management bodies. No other persons have representation power unless specifically authorised by proxy or other legal means.

From: Grinter, Ed <Ed.Grinter@tetratech.com>

Sent: Friday, 24 March 2023 4:28 PM

To: Harry Bacalis <HarryBacalis@eurofins.com>; Tiddy, Bryden <Bryden.Tiddy@tetratech.com>

Cc: Rodden, Jamie < JAMIE.RODDEN@tetratech.com>; Savini Suduweli Kondage

<SaviniSuduweli@eurofins.com>; #AU_CAU001_EnviroSampleVic <EnviroSampleVic@eurofins.com>
Subject: RE: Eurofins Test Results, Invoice - Report 971775 : Site MARINUS LINK - HYPERBRIDGE (754-

MELEN215878)

CAUTION: EXTERNAL EMAIL - Sent from an email domain that is not formally trusted by Eurofins.

Do not click on links or open attachments unless you recognise the sender and are certain that the content is safe.

Hi Harry,

Could I please get the following samples analysed for the CrS suite on a 48hr TAT:

HEY7_0.9-1.0	Ma 33597	
HEY8_0.4-0.5	600	15.
HEY8_0.9-1.0	602	BRIS.
HEY6_0.4-0.5	606	

Kind regards,

www.eurofins.com.au

EnviroSales@eurofins.com

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne 6 Monterey Road Dandenong South VIC 3175 Tel: +61 3 8564 5000 Geelong 19/8 Lewalan Street Grovedale VIC 3216 Tel: +61 3 8564 5000 **Sydney** 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400

Unit 1.2 Dacre Street Mitchell ACT 2911 Tel: +61 2 6113 8091 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 25403 NATA# 1261 Site# 25466 NATA# 1261 Site# 25466 NATA# 1261 Site# 2579 & 25289

Canberra

Brisbane 1/21 Smallwood Place Murarrie QLD 4172 Tel: +61 7 3902 4600

Newcastle 1/2 Frost Drive Mayfield West NSW 2304 Tel: +61 2 4968 8448

ABN: 91 05 0159 898

Perth 46-48 Banksia Road Welshpool WA 6106 Tel: +61 8 6253 4444 NATA# 2377 Site# 2370

NZBN: 9429046024954

Auckland Christchurch 35 O'Rorke Road 43 Detroit Drive Rolleston, Penrose, Auckland 1061 Christchurch 7675 Tel: +64 9 526 45 51 Tel: 0800 856 450 IANZ# 1327 IANZ# 1290

Sample Receipt Advice

Company name:

Tetra Tech Coffey Pty Ltd VIC

Contact name:

Ed Grinter

Project name:

MARINUS LINK - HYPERBRIDGE

Project ID:

754-MELEN215878

Turnaround time:

2 Day

Date/Time received

Mar 24, 2023 4:33 PM

Eurofins reference

975268

Sample Information

- A detailed list of analytes logged into our LIMS, is included in the attached summary table.
- All samples have been received as described on the above COC.
- COC has been completed correctly.
- Attempt to chill was evident.
- Appropriately preserved sample containers have been used.
- All samples were received in good condition.
- Samples have been provided with adequate time to commence analysis in accordance with the relevant holding times.
- Appropriate sample containers have been used.
- Sample containers for volatile analysis received with zero headspace.
- Split sample sent to requested external lab.
- Some samples have been subcontracted.
- N/A Custody Seals intact (if used).

Notes

Contact

If you have any questions with respect to these samples, please contact your Analytical Services Manager:

Savini Suduweli on phone: or by email: SaviniSuduweli@eurofins.com

Results will be delivered electronically via email to Ed Grinter - Ed.Grinter@tetratech.com.

Note: A copy of these results will also be delivered to the general Tetra Tech Coffey Pty Ltd VIC email address.

Eurofins Environment Testing Australia Pty Ltd

ABN: 50 005 085 521

Melbourne Geelong 6 Monterey Road 19/8 Lewalan Street Dandenong South Grovedale VIC 3175 VIC 3216 Tel: +61 3 8564 5000 Tel: +61 3 8564 5000

Sydney 179 Magowar Road Girraween NSW 2145 Tel: +61 2 9900 8400 Brisbane 1/21 Smallwood Place Murarrie QLD 4172

Newcastle 1/2 Frost Drive Tel: +61 2 4968 8448 Tel: +61 7 3902 4600

Mayfield West NSW 2304 NATA# 1261 NATA# 1261 Site# 1254 NATA# 1261 Site# 25403 NATA# 1261 Site# 18217 NATA# 1261 Site# 25466 NATA# 1261 Site# 20794 Site# 25079 & 25289

ABN: 91 05 0159 898 Perth

Welshpool

WA 6106

Received:

Auckland 46-48 Banksia Road 35 O'Rorke Road Penrose, Auckland 1061 Tel: +61 8 6253 4444 Tel: +64 9 526 45 51 NATA# 2377 Site# 2370 IANZ# 1327

Christchurch 43 Detroit Drive Rolleston, Christchurch 7675 Tel: 0800 856 450 IANZ# 1290

Company Name:

Tetra Tech Coffey Pty Ltd VIC

Address:

Level 11, 2 Riverside Quay,

Southbank VIC 3006

Project Name: Project ID:

MARINUS LINK - HYPERBRIDGE

754-MELEN215878

Order No.: Report #:

Canberra

Mitchell

ACT 2911

Unit 1.2 Dacre Street

Tel: +61 2 6113 8091

975268 03 9290 7000

Phone: Fax:

Due: **Priority:** Mar 29, 2023

NZBN: 9429046024954

Mar 24, 2023 4:33 PM

2 Day Ed Grinter **Contact Name:**

Eurofins Analytical Services Manager: Savini Suduweli

		Sa	mple Detail			Chromium Reducible Sulfur Suite	Moisture Set
Brist	oane Laboratory	y - NATA # 126 ²	1 Site # 2079	94		Χ	Χ
Exte	rnal Laboratory						
No	Sample ID	Sample Date	Sampling Time	Matrix	LAB ID		
1	HEY7_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0059840	Χ	Χ
2	HEY8_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0059841	Χ	Х
3	HEY8_0.9-1.0	Mar 08, 2023		Soil	M23-Ma0059842	Χ	Х
4	HEY6_0.4-0.5	Mar 08, 2023		Soil	M23-Ma0059843	Χ	Х
Test	Counts					4	4

CERTIFICATE OF ANALYSIS

Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Contact : JAMIE RODDEN

Address : LEVEL 1 23 WEST FYANS STREET

NEWTOWN 3220

Telephone : ---

Project: 754-MELEN215878

Order number : ---C-O-C number : ----

Sampler : JAMIE RODDEN

Site

Quote number : EN/222
No. of samples received : 5

No. of samples analysed : 5

Page : 1 of 11

Date Samples Received

Laboratory : Environmental Division Melbourne

Contact : Graeme Jablonskas

Address : 4 Westall Rd Springvale VIC Australia 3171

: 15-Mar-2023 11:40

Telephone : +6138549 9609

Date Analysis Commenced : 16-Mar-2023

Issue Date 23-Mar-2023 16:14

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

This Certificate of Analysis contains the following information:

- General Comments
- Analytical Results
- Surrogate Control Limits

Additional information pertinent to this report will be found in the following separate attachments: Quality Control Report, QA/QC Compliance Assessment to assist with Quality Review and Sample Receipt Notification.

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category

Ben Felgendrejeris

Senior Acid Sulfate Soil Chemist

Dilani Fernando

Laboratory Coordinator

Melbourne Inorganics, Springvale, VIC

Layla Hafner

Acid Sulphate Soils - Chemist

Brisbane Acid Sulphate Soils, Stafford, QLD

Rancy Wang

2IC Organic Chemist

Melbourne Inorganics, Springvale, VIC

Nancy Wang

Melbourne Organics, Springvale, VIC

Melbourne Organics, Springvale, VIC

Page : 2 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis.

Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

When sampling time information is not provided by the client, sampling dates are shown without a time component. In these instances, the time component has been assumed by the laboratory for processing purposes.

Where a result is required to meet compliance limits the associated uncertainty must be considered. Refer to the ALS Contract for details.

Key: CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

- ^ = This result is computed from individual analyte detections at or above the level of reporting
- ø = ALS is not NATA accredited for these tests
- ~ = Indicates an estimated value.
- EP075 (SIM): Where reported, Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a,h)anthracene (1.0), Benzo(g,h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero.
- Benzo(a)pyrene Toxicity Equivalent Quotient (TEQ) per the NEPM (2013) is the sum total of the concentration of the eight carcinogenic PAHs multiplied by their Toxicity Equivalence Factor (TEF) relative to Benzo(a)pyrene. TEF values are provided in brackets as follows: Benz(a)anthracene (0.1), Chrysene (0.01), Benzo(b+j) & Benzo(k)fluoranthene (0.1), Benzo(a)pyrene (1.0), Indeno(1.2.3.cd)pyrene (0.1), Dibenz(a.h)anthracene (1.0), Benzo(g.h.i)perylene (0.01). Less than LOR results for 'TEQ Zero' are treated as zero, for 'TEQ 1/2LOR' are treated as half the reported LOR, and for 'TEQ LOR' are treated as being equal to the reported LOR. Note: TEQ 1/2LOR and TEQ LOR will calculate as 0.6mg/Kg and 1.2mg/Kg respectively for samples with non-detects for all of the eight TEQ PAHs.
- EP080: Where reported, Total Xylenes is the sum of the reported concentrations of m&p-Xylene and o-Xylene at or above the LOR.
- EP068: Where reported, Total Chlordane (sum) is the sum of the reported concentrations of cis-Chlordane and trans-Chlordane at or above the LOR.
- EP075(SIM): Where reported. Total Cresol is the sum of the reported concentrations of 2-Methylphenol and 3- & 4-Methylphenol at or above the LOR.
- ASS: EA033 (CRS Suite):Retained Acidity not required because pH KCl greater than or equal to 4.5
- ASS: EA033 (CRS Suite): ANC not required because pH KCl less than 6.5
- ASS: EA037 (Rapid Field and F(ox) screening): pH F(ox) Reaction Rate: 1 Slight; 2 Moderate; 3 Strong; 4 Extreme
- ASS: EA033 (CRS Suite): Liming rate is calculated and reported on a dry weight basis assuming use of fine agricultural lime (CaCO3) and using a safety factor of 1.5 to allow for non-homogeneous mixing and poor reactivity of lime. For conversion of Liming Rate from 'kg/t dry weight' to 'kg/m3 in-situ soil', multiply 'reported results' x 'wet bulk density of soil in t/m3'.
- EA037 ASS Field Screening: NATA accreditation does not cover performance of this service.

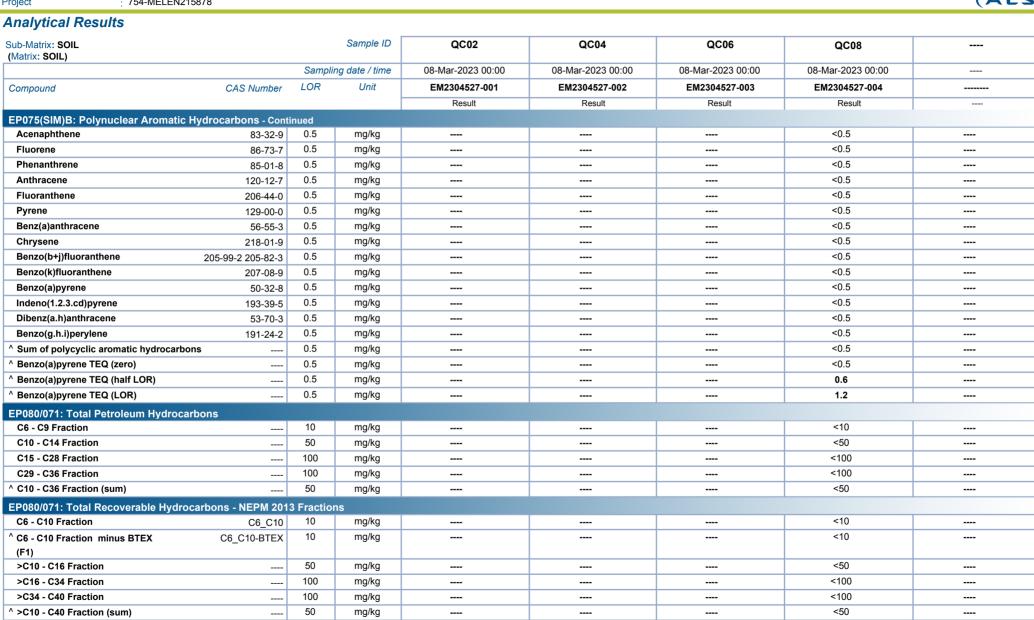
Page : 3 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Analytical Results

ub-Matrix: SOIL Matrix: SOIL)			Sample ID	QC02	QC04	QC06	QC08	
·		Samplii	ng date / time	08-Mar-2023 00:00	08-Mar-2023 00:00	08-Mar-2023 00:00	08-Mar-2023 00:00	
Compound	CAS Number	LOR	Unit	EM2304527-001	EM2304527-002	EM2304527-003	EM2304527-004	
				Result	Result	Result	Result	
EA033-A: Actual Acidity								
pH KCI (23A)		0.1	pH Unit			6.2		
Titratable Actual Acidity (23F)		2	mole H+ / t			5		
sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S			<0.02		
A033-B: Potential Acidity								
Chromium Reducible Sulfur (22B)		0.005	% S			0.009		
acidity - Chromium Reducible Sulfur		10	mole H+ / t			<10		
(a-22B)								
EA033-E: Acid Base Accounting								
ANC Fineness Factor		0.5	-			1.5		
Net Acidity (sulfur units)		0.02	% S			<0.02		
Net Acidity (acidity units)		10	mole H+ / t			10		
Liming Rate		1	kg CaCO3/t			<1		
Net Acidity excluding ANC (sulfur units)		0.02	% S			<0.02		
Net Acidity excluding ANC (acidity units)		10	mole H+ / t			10		
Liming Rate excluding ANC		1	kg CaCO3/t			<1		
A037: Ass Field Screening Analysis								
Ø pH (F)		0.1	pH Unit	5.5	6.2			
pH (Fox)		0.1	pH Unit	2.8	4.5			
Reaction Rate		1	-	3	2			
EA055: Moisture Content (Dried @ 105-11	0°C)							
Moisture Content		1.0	%				12.2	
EG005(ED093)T: Total Metals by ICP-AES								
Arsenic	7440-38-2	5	mg/kg				<5	
Cadmium	7440-43-9	1	mg/kg				<1	
Chromium	7440-47-3	2	mg/kg				50	
Copper	7440-50-8	5	mg/kg				18	
Lead	7439-92-1	5	mg/kg				14	
Nickel	7440-02-0	2	mg/kg				29	
Zinc	7440-66-6	5	mg/kg				58	
EG035T: Total Recoverable Mercury by F								
Mercury	7439-97-6	0.1	mg/kg				0.1	
EP075(SIM)B: Polynuclear Aromatic Hydr			J J					
Naphthalene	91-20-3	0.5	mg/kg				<0.5	
Acenaphthylene	208-96-8	0.5	mg/kg				<0.5	


Page : 4 of 11 Work Order EM2304527

Client : TETRA TECH COFFEY PTY LTD

754-MELEN215878 **Project**

^ >C10 - C16 Fraction minus Naphthalene

(F2) **EP080: BTEXN**

< 50

50

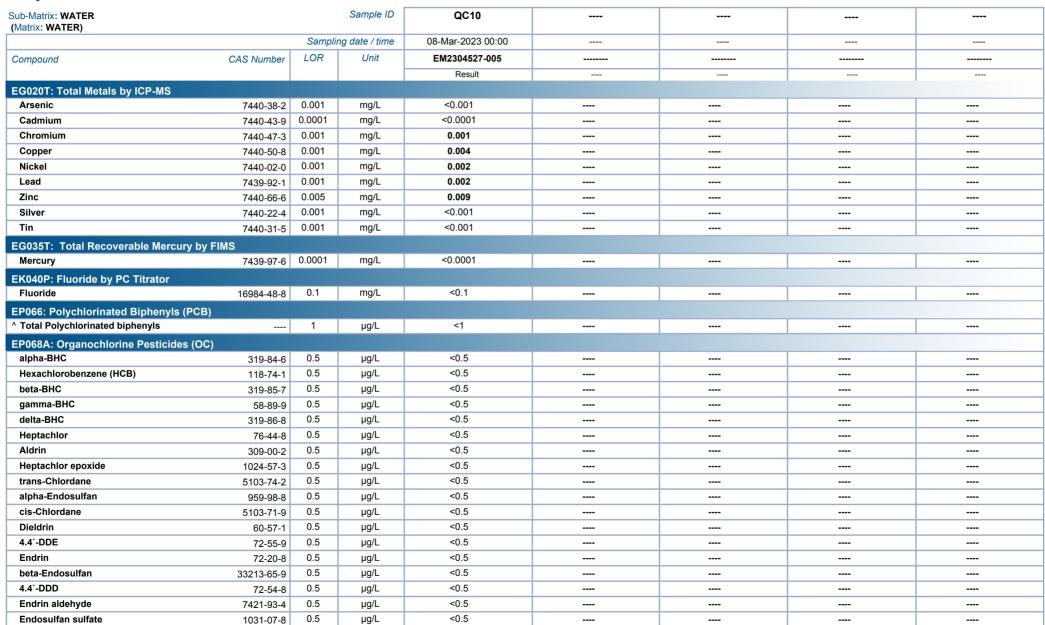
mg/kg

Page : 5 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Analytical Results

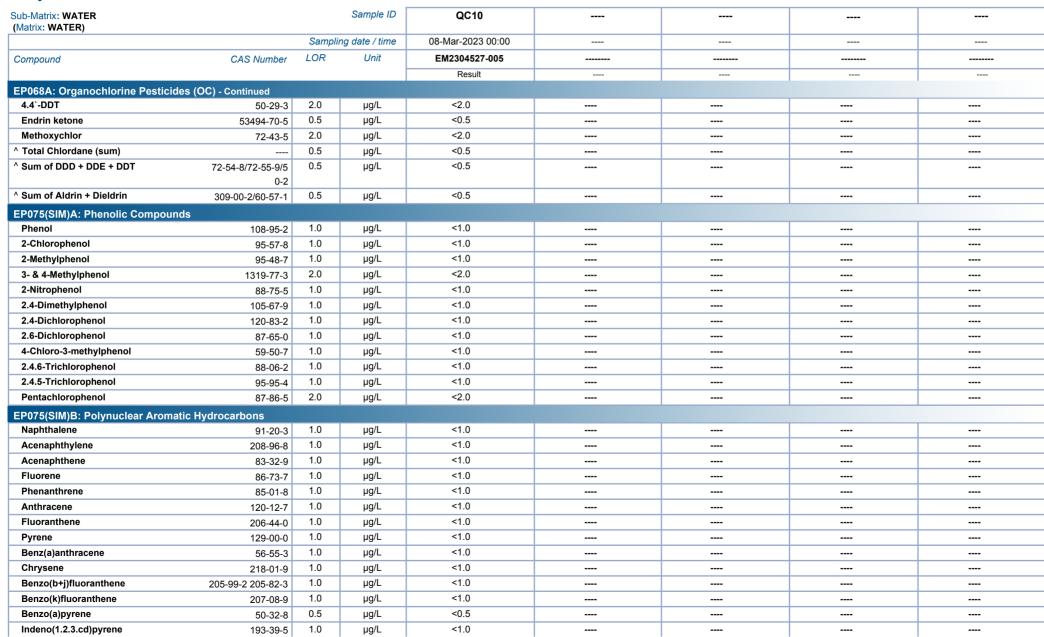

Sub-Matrix: SOIL (Matrix: SOIL)			Sample ID	QC02	QC04	QC06	QC08	
		Sampli	ng date / time	08-Mar-2023 00:00	08-Mar-2023 00:00	08-Mar-2023 00:00	08-Mar-2023 00:00	
Compound	CAS Number	LOR	Unit	EM2304527-001	EM2304527-002	EM2304527-003	EM2304527-004	
				Result	Result	Result	Result	
EP080: BTEXN - Continued								
Benzene	71-43-2	0.2	mg/kg	****			<0.2	
Toluene	108-88-3	0.5	mg/kg				<0.5	
Ethylbenzene	100-41-4	0.5	mg/kg				<0.5	
meta- & para-Xylene	108-38-3 106-42-3	0.5	mg/kg				<0.5	
ortho-Xylene	95-47-6	0.5	mg/kg				<0.5	
^ Sum of BTEX		0.2	mg/kg				<0.2	
^ Total Xylenes		0.5	mg/kg				<0.5	
Naphthalene	91-20-3	1	mg/kg				<1	
EP075(SIM)S: Phenolic Compound	Surrogates							
Phenol-d6	13127-88-3	0.5	%				90.5	
2-Chlorophenol-D4	93951-73-6	0.5	%				77.4	
2.4.6-Tribromophenol	118-79-6	0.5	%				80.4	
EP075(SIM)T: PAH Surrogates								
2-Fluorobiphenyl	321-60-8	0.5	%				93.3	
Anthracene-d10	1719-06-8	0.5	%				116	
4-Terphenyl-d14	1718-51-0	0.5	%				102	
EP080S: TPH(V)/BTEX Surrogates								
1.2-Dichloroethane-D4	17060-07-0	0.2	%				78.7	
Toluene-D8	2037-26-5	0.2	%				75.5	
4-Bromofluorobenzene	460-00-4	0.2	%				89.2	

Page : 6 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Analytical Results



Page : 7 of 11
Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Analytical Results

Page : 8 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

EP075(SIM)B: Polynuclear Aromatic Hydrocarbons - Continued

EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions

Sample ID

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

μg/L

%

Sampling date / time

LOR

1.0

1.0

0.5

0.5

20

50

100

50

50

20

20

100

100

100

100

100

1

2

2

2

2

2

5

0.5

CAS Number

53-70-3

191-24-2

C6 C10

71-43-2

108-88-3

100-41-4

95-47-6

91-20-3

2051-24-3

21655-73-2

108-38-3 106-42-3

C6 C10-BTEX

QC10

08-Mar-2023 00:00

EM2304527-005

Result

<1.0

<1.0

< 0.5

< 0.5

<20

<50

450

<50

450

<20

<20

<100

430

<100

430

<100

<1

<2

<2

<2

<2

<2

<1 <5

76.2

78.4

Project : 754-MELEN215878

^ Sum of polycyclic aromatic hydrocarbons

EP080/071: Total Petroleum Hydrocarbons

Analytical Results

Dibenz(a.h)anthracene

^ Benzo(a)pyrene TEQ (zero)

Benzo(g.h.i)perylene

C6 - C9 Fraction

C10 - C14 Fraction

C15 - C28 Fraction

C29 - C36 Fraction

C6 - C10 Fraction

>C10 - C16 Fraction

>C16 - C34 Fraction

>C34 - C40 Fraction

^ >C10 - C40 Fraction (sum)

^ >C10 - C16 Fraction minus Naphthalene

(F1)

(F2)

Toluene

EP080: BTEXN Benzene

Ethylbenzene

ortho-Xylene

^ Total Xylenes

^ Sum of BTEX

Naphthalene

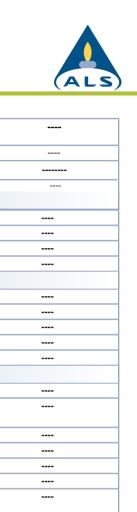
Dibromo-DDE

meta- & para-Xylene

EP066S: PCB Surrogate
Decachlorobiphenyl

EP068S: Organochlorine Pesticide Surrogate

EP068T: Organophosphorus Pesticide Surrogate

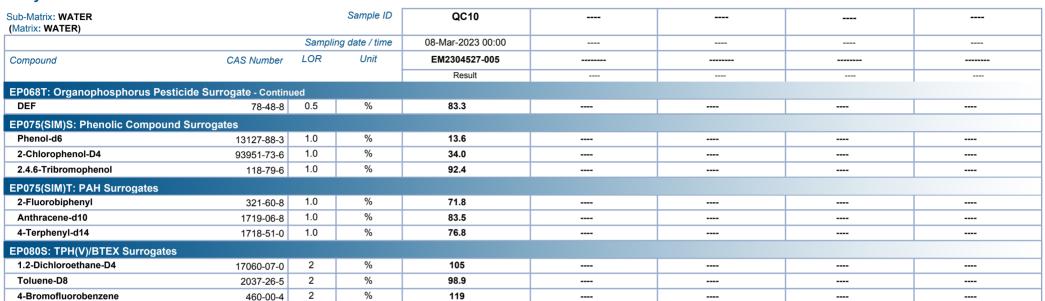

^ C10 - C36 Fraction (sum)

^ C6 - C10 Fraction minus BTEX

Sub-Matrix: WATER

(Matrix: WATER)

Compound



Page : 9 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Analytical Results

Page : 10 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Surrogate Control Limits

Sub-Matrix: SOIL		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP075(SIM)S: Phenolic Compound S	urrogates		
Phenol-d6	13127-88-3	54	125
2-Chlorophenol-D4	93951-73-6	65	123
2.4.6-Tribromophenol	118-79-6	34	122
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	61	125
Anthracene-d10	1719-06-8	62	130
4-Terphenyl-d14	1718-51-0	67	133
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	51	125
Toluene-D8	2037-26-5	55	125
4-Bromofluorobenzene	460-00-4	56	124
Sub-Matrix: WATER		Recovery	Limits (%)
Compound	CAS Number	Low	High
EP066S: PCB Surrogate			
Decachlorobiphenyl	2051-24-3	41	125
EP068S: Organochlorine Pesticide S	urrogate		
Dibromo-DDE	21655-73-2	49	117
EP068T: Organophosphorus Pesticio	de Surrogate		
DEF	78-48-8	51	127
EP075(SIM)S: Phenolic Compound S	urrogates		
Phenol-d6	13127-88-3	10	51
2-Chlorophenol-D4	93951-73-6	30	114
2.4.6-Tribromophenol	118-79-6	26	133
EP075(SIM)T: PAH Surrogates			
2-Fluorobiphenyl	321-60-8	35	127
Anthracene-d10	1719-06-8	44	122
4-Terphenyl-d14	1718-51-0	44	124
EP080S: TPH(V)/BTEX Surrogates			
1.2-Dichloroethane-D4	17060-07-0	73	129
Toluene-D8	2037-26-5	70	125
4-Bromofluorobenzene	460-00-4	71	129

Page : 11 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Inter-Laboratory Testing

Analysis conducted by ALS Brisbane, NATA accreditation no. 825, site no. 818 (Chemistry) 18958 (Biology).

(SOIL) EA037: Ass Field Screening Analysis

(SOIL) EA033-B: Potential Acidity

(SOIL) EA033-C: Acid Neutralising Capacity

(SOIL) EA033-D: Retained Acidity (SOIL) EA033-A: Actual Acidity

(SOIL) EA033-E: Acid Base Accounting

QUALITY CONTROL REPORT

Work Order : **EM2304527** Page : 1 of 11

Client : TETRA TECH COFFEY PTY LTD Laboratory : Environmental Division Melbourne

Contact : JAMIE RODDEN Contact : Graeme Jablonskas

Address : LEVEL 1 23 WEST FYANS STREET Address : 4 Westall Rd Springvale VIC Australia 3171

NEWTOWN 3220

Telephone : +6138549 9609

Project: 754-MELEN215878Date Samples Received: 15-Mar-2023Order number: ---Date Analysis Commenced: 16-Mar-2023

C-O-C number : ---- Issue Date
Sampler : JAMIE RODDEN

Site :
Quote number : EN/222

No. of samples received : 5
No. of samples analysed : 5

Accreditation No. 825
Accredited for compliance with ISO/IEC 17025 - Testing

This report supersedes any previous report(s) with this reference. Results apply to the sample(s) as submitted, unless the sampling was conducted by ALS. This document shall not be reproduced, except in full.

· 23-Mar-2023

This Quality Control Report contains the following information:

- Laboratory Duplicate (DUP) Report; Relative Percentage Difference (RPD) and Acceptance Limits
- Method Blank (MB) and Laboratory Control Spike (LCS) Report; Recovery and Acceptance Limits
- Matrix Spike (MS) Report; Recovery and Acceptance Limits

Signatories

This document has been electronically signed by the authorized signatories below. Electronic signing is carried out in compliance with procedures specified in 21 CFR Part 11.

Signatories	Position	Accreditation Category
Ben Felgendrejeris	Senior Acid Sulfate Soil Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Dilani Fernando	Laboratory Coordinator	Melbourne Inorganics, Springvale, VIC
Layla Hafner	Acid Sulphate Soils - Chemist	Brisbane Acid Sulphate Soils, Stafford, QLD
Nancy Wang	2IC Organic Chemist	Melbourne Inorganics, Springvale, VIC
Nancy Wang	2IC Organic Chemist	Melbourne Organics, Springvale, VIC

Page : 2 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project: 754-MELEN215878

General Comments

The analytical procedures used by ALS have been developed from established internationally recognised procedures such as those published by the USEPA, APHA, AS and NEPM. In house developed procedures are fully validated and are often at the client request.

Where moisture determination has been performed, results are reported on a dry weight basis.

Where a reported less than (<) result is higher than the LOR, this may be due to primary sample extract/digestate dilution and/or insufficient sample for analysis. Where the LOR of a reported result differs from standard LOR, this may be due to high moisture content, insufficient sample (reduced weight employed) or matrix interference.

Key: Anonymous = Refers to samples which are not specifically part of this work order but formed part of the QC process lot

CAS Number = CAS registry number from database maintained by Chemical Abstracts Services. The Chemical Abstracts Service is a division of the American Chemical Society.

LOR = Limit of reporting

RPD = Relative Percentage Difference

= Indicates failed QC

Laboratory Duplicate (DUP) Report

The quality control term Laboratory Duplicate refers to a randomly selected intralaboratory split. Laboratory duplicates provide information regarding method precision and sample heterogeneity. The permitted ranges for the Relative Percent Deviation (RPD) of Laboratory Duplicates are specified in ALS Method QWI-EN/38 and are dependent on the magnitude of results in comparison to the level of reporting: Result < 10 times LOR: No Limit; Result between 10 and 20 times LOR: 0% - 50%; Result > 20 times LOR: 0% - 20%.

Sub-Matrix: SOIL						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG005(ED093)T: To	tal Metals by ICP-AES	(QC Lot: 4935717)							
EM2304346-076	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	41	45	8.5	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	21	23	9.0	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	10	11	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	11	12	0.0	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	7	9	18.2	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	24	25	0.0	No Limit
EM2304346-091	Anonymous	EG005T: Cadmium	7440-43-9	1	mg/kg	<1	<1	0.0	No Limit
		EG005T: Chromium	7440-47-3	2	mg/kg	50	51	2.8	0% - 20%
		EG005T: Nickel	7440-02-0	2	mg/kg	26	28	8.7	0% - 50%
		EG005T: Arsenic	7440-38-2	5	mg/kg	12	12	0.0	No Limit
		EG005T: Copper	7440-50-8	5	mg/kg	14	15	7.8	No Limit
		EG005T: Lead	7439-92-1	5	mg/kg	10	12	21.0	No Limit
		EG005T: Zinc	7440-66-6	5	mg/kg	27	28	3.8	No Limit
EA033-A: Actual Ac	idity (QC Lot: 4945932	2)							
EM2303971-003	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	2	<2	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	6.4	6.4	0.0	0% - 20%
EM2304031-005	Anonymous	EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02	<0.02	0.0	No Limit
		EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	<2	0.0	No Limit
		EA033: pH KCI (23A)		0.1	pH Unit	8.0	7.9	0.0	0% - 20%
EA033-B: Potential	Acidity (QC Lot: 49459	932)							
EM2303971-003	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.512	0.519	1.3	0% - 20%

Page : 3 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EA033-B: Potential	Acidity (QC Lot: 494	5932) - continued							
EM2303971-003	Anonymous	EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	320	324	1.3	0% - 20%
EM2304031-005	Anonymous	EA033: Chromium Reducible Sulfur (22B)		0.005	% S	0.075	0.076	0.0	0% - 50%
		EA033: acidity - Chromium Reducible Sulfur		10	mole H+ / t	47	47	0.0	No Limit
FA027, Acc Field C	Lavaaning Analysis (C	(a-22B)							
	creening Analysis (C			0.4	1111				00/ 000/
EB2307617-001	Anonymous	EA037: pH (F)		0.1	pH Unit	5.4	5.4	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	3.3	3.2	0.0	0% - 20%
EM2304527-001	QC02	EA037: pH (F)		0.1	pH Unit	5.5	5.6	0.0	0% - 20%
		EA037: pH (Fox)		0.1	pH Unit	2.8	2.7	0.0	0% - 20%
EA055: Moisture Co	ontent (Dried @ 105-1	10°C) (QC Lot: 4933306)							
EM2304498-051	Anonymous	EA055: Moisture Content		0.1	%	14.0	14.3	2.4	0% - 50%
EM2304527-004	QC08	EA055: Moisture Content		0.1	%	12.2	11.4	6.3	0% - 50%
EG035T: Total Rec	overable Mercury by I	FIMS (QC Lot: 4935718)							
EM2304346-076	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EM2304346-091	Anonymous	EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	<0.1	0.0	No Limit
EP075(SIM)B: Polyr	nuclear Aromatic Hvd	rocarbons (QC Lot: 4934867)							
EM2304498-058	Anonymous	EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
	, , , , , ,	EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Pyrene EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			205-82-3						
		EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
P080/071: Total Pe	troleum Hydrocarbor	ns (QC Lot: 4932664)							
EM2304346-001	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EM2304346-037	Anonymous	EP080: C6 - C9 Fraction		10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total Pe	etroleum Hydrocarbor								1
EM2304346-072	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
00 10 10 012		LF 07 1. G 10 - G20 I IdCliUII		100	mg/ng	- 100	-100	0.0	140 Ellillit

Page : 4 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: SOIL						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EP080/071: Total Pe	etroleum Hydrocarbo	ns (QC Lot: 4934865) - continued							
EM2304346-072	Anonymous	EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EM2304498-058	Anonymous	EP071: C15 - C28 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C29 - C36 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: C10 - C14 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080/071: Total Ro	ecoverable Hydrocarl	bons - NEPM 2013 Fractions (QC Lot: 4932664)							
EM2304346-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EM2304346-037	Anonymous	EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	<10	0.0	No Limit
EP080/071: Total R	ecoverable Hydrocarl	bons - NEPM 2013 Fractions (QC Lot: 4934865)							
EM2304346-072	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
	, , , ,	EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EM2304498-058	Anonymous	EP071: >C16 - C34 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C34 - C40 Fraction		100	mg/kg	<100	<100	0.0	No Limit
		EP071: >C10 - C16 Fraction		50	mg/kg	<50	<50	0.0	No Limit
EP080: BTEXN (QC	Lot: 4932664)								
EM2304346-001	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
EM2304346-037	Anonymous	EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	<0.2	0.0	No Limit
		EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	<0.5	0.0	No Limit
		EP080: Naphthalene	91-20-3	1	mg/kg	<1	<1	0.0	No Limit
Sub-Matrix: WATER						Laboratory	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020T: Total Meta	ils by ICP-MS (QC Lo	ot: 4944730)							
EM2304478-001	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	0.001	0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.068	0.063	7.0	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	0.002	0.001	0.0	No Limit

Page : 5 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: WATER						Laboratory I	Duplicate (DUP) Report		
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	LOR	Unit	Original Result	Duplicate Result	RPD (%)	Acceptable RPD (%)
EG020T: Total Meta	ils by ICP-MS (QC Lo	ot: 4944730) - continued							
EM2304478-001	Anonymous	EG020A-T: Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.005	<0.005	0.0	No Limit
EM2304590-003	Anonymous	EG020A-T: Cadmium	7440-43-9	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
		EG020A-T: Arsenic	7440-38-2	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Chromium	7440-47-3	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Copper	7440-50-8	0.001	mg/L	0.109	0.109	0.0	0% - 20%
		EG020A-T: Lead	7439-92-1	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Nickel	7440-02-0	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Tin	7440-31-5	0.001	mg/L	<0.001	<0.001	0.0	No Limit
		EG020A-T: Zinc	7440-66-6	0.005	mg/L	0.016	0.016	0.0	No Limit
EG020T: Total Meta	ils by ICP-MS (QC Lo	ot: 4944731)							
EM2304527-005	QC10	EG020B-T: Silver	7440-22-4	0.001	mg/L	<0.001	<0.001	0.0	No Limit
EG035T: Total Rec	overable Mercury by	FIMS (QC Lot: 4942177)			- U				
EM2304104-011	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
EM2304342-003	Anonymous	EG035T: Mercury	7439-97-6	0.0001	mg/L	<0.0001	<0.0001	0.0	No Limit
	y PC Titrator (QC Lo				3				
EM2304486-002	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
EM2304502-019	Anonymous	EK040P: Fluoride	16984-48-8	0.1	mg/L	<0.1	<0.1	0.0	No Limit
		ns (QC Lot: 4939255)	10001 10 0	0.1	1119/2	-0.1	-0.1	0.0	110 Emile
EM2304631-001	_			20	//	<20	<20	0.0	No Limit
EM2304631-001 EM2304780-002	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20 <20	0.0	No Limit
	Anonymous	EP080: C6 - C9 Fraction		20	μg/L	<20	<20	0.0	NO LIMIL
	_	bons - NEPM 2013 Fractions (QC Lot: 4939255)							
EM2304631-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EM2304780-002	Anonymous	EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	<20	0.0	No Limit
EP080: BTEXN (QC	C Lot: 4939255)								
EM2304631-001	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit
EM2304780-002	Anonymous	EP080: Benzene	71-43-2	1	μg/L	<1	<1	0.0	No Limit
		EP080: Toluene	108-88-3	2	μg/L	<2	<2	0.0	No Limit
		EP080: Ethylbenzene	100-41-4	2	μg/L	<2	<2	0.0	No Limit
		EP080: meta- & para-Xylene	108-38-3	2	μg/L	<2	<2	0.0	No Limit
			106-42-3						
		EP080: ortho-Xylene	95-47-6	2	μg/L	<2	<2	0.0	No Limit
		EP080: Naphthalene	91-20-3	5	μg/L	<5	<5	0.0	No Limit

Page : 6 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Method Blank (MB) and Laboratory Control Sample (LCS) Report

The quality control term Method / Laboratory Blank refers to an analyte free matrix to which all reagents are added in the same volumes or proportions as used in standard sample preparation. The purpose of this QC parameter is to monitor potential laboratory contamination. The quality control term Laboratory Control Sample (LCS) refers to a certified reference material, or a known interference free matrix spiked with target analytes. The purpose of this QC parameter is to monitor method precision and accuracy independent of sample matrix. Dynamic Recovery Limits are based on statistical evaluation of processed LCS.

Sub-Matrix: SOIL	Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report					
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)		
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High		
EG005(ED093)T: Total Metals by ICP-AES (QCLot: 49	935717)									
EG005T: Arsenic	7440-38-2	5	mg/kg	<5	123 mg/kg	105	70.0	130		
EG005T: Cadmium	7440-43-9	1	mg/kg	<1	1.23 mg/kg	65.6	50.0	130		
EG005T: Chromium	7440-47-3	2	mg/kg	<2	20.2 mg/kg	105	70.0	130		
EG005T: Copper	7440-50-8	5	mg/kg	<5	55.9 mg/kg	95.2	70.0	130		
EG005T: Lead	7439-92-1	5	mg/kg	<5	62.4 mg/kg	95.0	70.0	130		
EG005T: Nickel	7440-02-0	2	mg/kg	<2	15.4 mg/kg	100	70.0	130		
EG005T: Zinc	7440-66-6	5	mg/kg	<5	162 mg/kg	75.8	70.0	130		
EA033-A: Actual Acidity (QCLot: 4945932)										
EA033: pH KCI (23A)			pH Unit		4.4 pH Unit	98.0	91.0	107		
EA033: Titratable Actual Acidity (23F)		2	mole H+ / t	<2	16 mole H+ / t	120	70.0	124		
EA033: sulfidic - Titratable Actual Acidity (s-23F)		0.02	% pyrite S	<0.02						
EA033-B: Potential Acidity (QCLot: 4945932)										
EA033: Chromium Reducible Sulfur (22B)		0.005	% S	<0.005	0.246 % S	105	77.0	121		
EA033: acidity - Chromium Reducible Sulfur (a-22B)		10	mole H+ / t	<10						
EG035T: Total Recoverable Mercury by FIMS (QCLo	ot: 4935718)									
EG035T: Mercury	7439-97-6	0.1	mg/kg	<0.1	0.64 mg/kg	85.9	70.0	130		
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons((QCLot: 4934867)									
EP075(SIM): Naphthalene	91-20-3	0.5	mg/kg	<0.5	3 mg/kg	106	85.7	123		
EP075(SIM): Acenaphthylene	208-96-8	0.5	mg/kg	<0.5	3 mg/kg	101	81.0	123		
EP075(SIM): Acenaphthene	83-32-9	0.5	mg/kg	<0.5	3 mg/kg	107	83.6	120		
EP075(SIM): Fluorene	86-73-7	0.5	mg/kg	<0.5	3 mg/kg	102	81.3	126		
EP075(SIM): Phenanthrene	85-01-8	0.5	mg/kg	<0.5	3 mg/kg	107	79.4	123		
EP075(SIM): Anthracene	120-12-7	0.5	mg/kg	<0.5	3 mg/kg	114	81.7	127		
EP075(SIM): Fluoranthene	206-44-0	0.5	mg/kg	<0.5	3 mg/kg	107	78.3	124		
EP075(SIM): Pyrene	129-00-0	0.5	mg/kg	<0.5	3 mg/kg	110	79.9	128		
EP075(SIM): Benz(a)anthracene	56-55-3	0.5	mg/kg	<0.5	3 mg/kg	106	76.9	123		
EP075(SIM): Chrysene	218-01-9	0.5	mg/kg	<0.5	3 mg/kg	117	80.9	130		
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	0.5	mg/kg	<0.5	3 mg/kg	99.9	70.0	121		
	205-82-3									
EP075(SIM): Benzo(k)fluoranthene	207-08-9	0.5	mg/kg	<0.5	3 mg/kg	102	80.4	130		
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	mg/kg	<0.5	3 mg/kg	110	70.2	123		
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	0.5	mg/kg	<0.5	3 mg/kg	96.9	67.9	122		
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	0.5	mg/kg	<0.5	3 mg/kg	97.4	65.8	123		
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	0.5	mg/kg	<0.5	3 mg/kg	100	65.8	127		

Page : 7 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: SOIL			Method Blank (MB)	Laboratory Control Spike (LCS) Report				
	CAS Number			Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP080/071: Total Petroleum Hydrocarbons (Q0	CLot: 4932664)							
EP080: C6 - C9 Fraction		10	mg/kg	<10	36 mg/kg	82.0	58.6	131
EP080/071: Total Petroleum Hydrocarbons (Q0	CLot: 4934865)							
EP071: C10 - C14 Fraction		50	mg/kg	<50	770 mg/kg	108	75.0	128
EP071: C15 - C28 Fraction		100	mg/kg	<100	2860 mg/kg	97.8	82.0	123
EP071: C29 - C36 Fraction		100	mg/kg	<100	1540 mg/kg	99.5	82.4	121
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 4932664)						
EP080: C6 - C10 Fraction	C6_C10	10	mg/kg	<10	45 mg/kg	80.1	59.3	128
EP080/071: Total Recoverable Hydrocarbons -	NEPM 2013 Fractions (QCL	ot: 4934865)						
EP071: >C10 - C16 Fraction		50	mg/kg	<50	1170 mg/kg	95.8	77.0	130
EP071: >C16 - C34 Fraction		100	mg/kg	<100	3830 mg/kg	98.3	81.5	120
EP071: >C34 - C40 Fraction		100	mg/kg	<100	290 mg/kg	90.2	73.3	137
EP080: BTEXN (QCLot: 4932664)								
EP080: Benzene	71-43-2	0.2	mg/kg	<0.2	2 mg/kg	84.2	61.6	117
EP080: Toluene	108-88-3	0.5	mg/kg	<0.5	2 mg/kg	84.0	65.8	125
EP080: Ethylbenzene	100-41-4	0.5	mg/kg	<0.5	2 mg/kg	82.9	65.8	124
EP080: meta- & para-Xylene	108-38-3	0.5	mg/kg	<0.5	4 mg/kg	85.6	64.8	134
	106-42-3							
EP080: ortho-Xylene	95-47-6	0.5	mg/kg	<0.5	2 mg/kg	88.0	68.7	132
EP080: Naphthalene	91-20-3	1	mg/kg	<1	0.5 mg/kg	86.4	61.8	123
EP080: Naphthalene Sub-Matrix: WATER	91-20-3	1	mg/kg	<1 Method Blank (MB)	0.5 mg/kg	86.4 Laboratory Control Spike (LCS		123
	91-20-3	1	mg/kg		0.5 mg/kg Spike		S) Report	123 e Limits (%)
	91-20-3 CAS Number	1 LOR	mg/kg	Method Blank (MB)		Laboratory Control Spike (LCS	S) Report	I
Sub-Matrix: WATER	CAS Number			Method Blank (MB) Report	Spike	Laboratory Control Spike (LCS Spike Recovery (%)	S) Report Acceptable	e Limits (%)
Sub-Matrix: WATER Method: Compound	CAS Number			Method Blank (MB) Report	Spike	Laboratory Control Spike (LCS Spike Recovery (%)	S) Report Acceptable	e Limits (%)
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944	CAS Number	LOR	Unit	Method Blank (MB) Report Result	Spike Concentration	Laboratory Control Spike (LCS Spike Recovery (%) LCS	S) Report Acceptable Low	e Limits (%) High
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944) EG020A-T: Arsenic	730) 7440-38-2	<i>LOR</i> 0.001	Unit mg/L	Method Blank (MB) Report Result <0.001	Spike Concentration 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107	S) Report Acceptable Low 89.2	Limits (%) High
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944 EG020A-T: Arsenic EG020A-T: Cadmium	730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8	0.001 0.0001 0.0001 0.001	Unit mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105	89.2 86.4 86.9 86.9	### Limits (%) High 115 115 112 111
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944 EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium	730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1	0.001 0.0001 0.0001	Unit mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105 104	S) Report Acceptable Low 89.2 86.4 86.9	2 Limits (%) High 115 115 112 111 112
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944 EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper	CAS Number 730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0	0.001 0.0001 0.0001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105 104 104 104	89.2 86.4 86.9 86.9 88.3 87.9	2 Limits (%) High 115 115 112 111 112 113
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944 EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead	730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-31-5	0.001 0.0001 0.0001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105 104 104 110	89.2 86.4 86.9 86.9 88.3 87.9 91.2	2 Limits (%) High 115 115 112 111 112 113 118
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944) EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead EG020A-T: Nickel	CAS Number 730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0	0.001 0.0001 0.0001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105 104 104 104	89.2 86.4 86.9 86.9 88.3 87.9	2 Limits (%) High 115 115 112 111 112 113
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944) EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead EG020A-T: Nickel EG020A-T: Tin	730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-31-5 7440-66-6	0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105 104 104 110	89.2 86.4 86.9 86.9 88.3 87.9 91.2	2 Limits (%) High 115 115 112 111 112 113 118
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944) EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead EG020A-T: Nickel EG020A-T: Tin EG020A-T: Zinc	730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-31-5 7440-66-6	0.001 0.0001 0.0001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 103 105 104 104 110	89.2 86.4 86.9 86.9 88.3 87.9 91.2	2 Limits (%) High 115 115 112 111 112 113 118
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944) EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead EG020A-T: Nickel EG020A-T: Tin EG020A-T: Zinc EG020T: Total Metals by ICP-MS (QCLot: 4944)	CAS Number 730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-31-5 7440-66-6 731)	0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 105 104 104 110 109	89.2 89.2 86.4 86.9 86.9 88.3 87.9 91.2 86.7	### Limits (%) #### 115 115 112 111 112 113 118 117
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944 EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead EG020A-T: Nickel EG020A-T: Tin EG020A-T: Zinc EG020A-T: Zinc EG020A-T: Silver	CAS Number 730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-31-5 7440-66-6 731)	0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 105 104 104 110 109	89.2 89.2 86.4 86.9 86.9 88.3 87.9 91.2 86.7	### Limits (%) #### 115 115 112 111 112 113 118 117
Sub-Matrix: WATER Method: Compound EG020T: Total Metals by ICP-MS (QCLot: 4944 EG020A-T: Arsenic EG020A-T: Cadmium EG020A-T: Chromium EG020A-T: Copper EG020A-T: Lead EG020A-T: Nickel EG020A-T: Tin EG020A-T: Zinc EG020A-T: Zinc EG020A-T: Zinc EG020T: Total Metals by ICP-MS (QCLot: 4944) EG020B-T: Silver EG035T: Total Recoverable Mercury by FIMS	CAS Number 730) 7440-38-2 7440-43-9 7440-47-3 7440-50-8 7439-92-1 7440-02-0 7440-31-5 7440-66-6 731) 7440-22-4 (QCLot: 4942177) 7439-97-6	0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.005	mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L	Method Blank (MB) Report Result	Spike Concentration 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L 0.1 mg/L	Laboratory Control Spike (LCS Spike Recovery (%) LCS 107 103 105 104 104 110 109 110 110 109	89.2 86.4 86.9 86.9 86.9 87.9 91.2 86.7	2 Limits (%) High 115 115 112 111 112 113 118 117

Page : 8 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	e Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP066: Polychlorinated Biphenyls (PCB) (QCLot: 4	1932356)							
EP066: Total Polychlorinated biphenyls		1	μg/L	<1	10 μg/L	110	52.0	136
EP068A: Organochlorine Pesticides (OC) (QCLot: 4	4932354)		·					
EP068: alpha-BHC	319-84-6	0.5	μg/L	<0.5	2.5 μg/L	103	50.6	119
EP068: Hexachlorobenzene (HCB)	118-74-1	0.5	μg/L	<0.5	2.5 μg/L	97.8	44.2	117
EP068: beta-BHC	319-85-7	0.5	μg/L	<0.5	2.5 μg/L	108	53.7	119
EP068: gamma-BHC	58-89-9	0.5	μg/L	<0.5	2.5 μg/L	106	47.7	117
EP068: delta-BHC	319-86-8	0.5	μg/L	<0.5	2.5 μg/L	107	52.5	117
EP068: Heptachlor	76-44-8	0.5	μg/L	<0.5	2.5 μg/L	101	46.9	118
EP068: Aldrin	309-00-2	0.5	μg/L	<0.5	2.5 μg/L	94.9	48.0	115
EP068: Heptachlor epoxide	1024-57-3	0.5	μg/L	<0.5	2.5 μg/L	104	51.1	119
EP068: trans-Chlordane	5103-74-2	0.5	μg/L	<0.5	2.5 μg/L	104	48.4	120
EP068: alpha-Endosulfan	959-98-8	0.5	μg/L	<0.5	2.5 μg/L	98.4	50.1	122
EP068: cis-Chlordane	5103-71-9	0.5	μg/L	<0.5	2.5 μg/L	104	51.0	118
EP068: Dieldrin	60-57-1	0.5	μg/L	<0.5	2.5 μg/L	105	48.4	116
EP068: 4.4`-DDE	72-55-9	0.5	μg/L	<0.5	2.5 μg/L	104	49.3	116
EP068: Endrin	72-20-8	0.5	μg/L	<0.5	2.5 μg/L	107	47.1	130
EP068: beta-Endosulfan	33213-65-9	0.5	μg/L	<0.5	2.5 μg/L	109	51.6	118
EP068: 4.4`-DDD	72-54-8	0.5	μg/L	<0.5	2.5 μg/L	107	48.6	122
EP068: Endrin aldehyde	7421-93-4	0.5	μg/L	<0.5	2.5 μg/L	106	49.4	128
EP068: Endosulfan sulfate	1031-07-8	0.5	μg/L	<0.5	2.5 μg/L	104	49.1	123
EP068: 4.4`-DDT	50-29-3	2	μg/L	<2.0	2.5 μg/L	106	45.6	126
EP068: Endrin ketone	53494-70-5	0.5	μg/L	<0.5	2.5 μg/L	107	52.8	117
EP068: Methoxychlor	72-43-5	2	μg/L	<2.0	2.5 μg/L	106	47.1	126
EP075(SIM)A: Phenolic Compounds (QCLot: 49323	355)							
EP075(SIM): Phenol	108-95-2	1	μg/L	<1.0	5 μg/L	42.3	17.8	51.1
EP075(SIM): 2-Chlorophenol	95-57-8	1	μg/L	<1.0	5 μg/L	91.2	43.2	107
EP075(SIM): 2-Methylphenol	95-48-7	1	μg/L	<1.0	5 μg/L	81.6	39.2	98.7
EP075(SIM): 3- & 4-Methylphenol	1319-77-3	2	μg/L	<2.0	10 μg/L	76.0	35.5	91.3
EP075(SIM): 2-Nitrophenol	88-75-5	1	μg/L	<1.0	5 μg/L	96.1	34.4	124
EP075(SIM): 2.4-Dimethylphenol	105-67-9	1	μg/L	<1.0	5 μg/L	93.4	44.4	112
EP075(SIM): 2.4-Dichlorophenol	120-83-2	1	μg/L	<1.0	5 μg/L	98.3	45.3	115
EP075(SIM): 2.6-Dichlorophenol	87-65-0	1	μg/L	<1.0	5 μg/L	98.5	44.3	116
EP075(SIM): 4-Chloro-3-methylphenol	59-50-7	1	μg/L	<1.0	5 μg/L	101	46.6	117
EP075(SIM): 2.4.6-Trichlorophenol	88-06-2	1	μg/L	<1.0	5 μg/L	104	38.2	122
EP075(SIM): 2.4.5-Trichlorophenol	95-95-4	1	μg/L	<1.0	5 μg/L	105	43.2	123
EP075(SIM): Pentachlorophenol	87-86-5	2	μg/L	<2.0	10 μg/L	128	48.1	130
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons	(QCLot: 4932355)							
EP075(SIM): Naphthalene	91-20-3	1	μg/L	<1.0	5 μg/L	95.0	42.8	114

Page : 9 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: WATER				Method Blank (MB)		Laboratory Control Spike (LC	S) Report	
				Report	Spike	Spike Recovery (%)	Acceptable	Limits (%)
Method: Compound	CAS Number	LOR	Unit	Result	Concentration	LCS	Low	High
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons (QCL	ot: 4932355) - co	ntinued						
EP075(SIM): Acenaphthylene	208-96-8	1	μg/L	<1.0	5 μg/L	96.6	48.6	119
EP075(SIM): Acenaphthene	83-32-9	1	μg/L	<1.0	5 μg/L	97.0	47.0	117
EP075(SIM): Fluorene	86-73-7	1	μg/L	<1.0	5 μg/L	101	49.5	119
EP075(SIM): Phenanthrene	85-01-8	1	μg/L	<1.0	5 μg/L	102	49.4	121
EP075(SIM): Anthracene	120-12-7	1	μg/L	<1.0	5 μg/L	99.9	48.4	122
EP075(SIM): Fluoranthene	206-44-0	1	μg/L	<1.0	5 μg/L	105	50.3	124
EP075(SIM): Pyrene	129-00-0	1	μg/L	<1.0	5 μg/L	106	50.0	126
EP075(SIM): Benz(a)anthracene	56-55-3	1	μg/L	<1.0	5 μg/L	105	49.4	127
EP075(SIM): Chrysene	218-01-9	1	μg/L	<1.0	5 μg/L	104	48.7	126
EP075(SIM): Benzo(b+j)fluoranthene	205-99-2	1	μg/L	<1.0	5 μg/L	98.8	54.5	134
EP075(SIM): Benzo(k)fluoranthene	205-82-3 207-08-9	1	μg/L	<1.0	5 μg/L	104	56.1	134
EP075(SIM): Benzo(a)pyrene	50-32-8	0.5	μg/L	<0.5	5 μg/L	104	55.6	135
EP075(SIM): Indeno(1.2.3.cd)pyrene	193-39-5	1	μg/L	<1.0	5 μg/L	102	54.4	126
EP075(SIM): Dibenz(a.h)anthracene	53-70-3	1	μg/L	<1.0	5 μg/L	102	54.5	126
EP075(SIM): Benzo(g.h.i)perylene	191-24-2	1	μg/L	<1.0	5 μg/L	102	54.4	126
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4932	352)							
EP071: C10 - C14 Fraction		50	μg/L	<50	4460 μg/L	76.2	47.2	122
EP071: C15 - C28 Fraction		100	μg/L	<100	14300 μg/L	90.2	52.9	131
EP071: C29 - C36 Fraction		50	μg/L	<50	7300 µg/L	96.3	50.4	127
EP080/071: Total Petroleum Hydrocarbons (QCLot: 4939)	255)							
EP080: C6 - C9 Fraction		20	μg/L	<20	360 μg/L	108	66.2	134
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	ot: 4932352)						
EP071: >C10 - C16 Fraction		100	μg/L	<100	6090 μg/L	81.4	49.1	125
EP071: >C16 - C34 Fraction		100	μg/L	<100	19400 µg/L	88.0	51.6	128
EP071: >C34 - C40 Fraction		100	μg/L	<100	1300 μg/L	79.6	47.2	130
EP080/071: Total Recoverable Hydrocarbons - NEPM 201	3 Fractions (QCL	ot: 4939255)						
EP080: C6 - C10 Fraction	C6_C10	20	μg/L	<20	450 μg/L	108	66.2	132
EP080: BTEXN (QCLot: 4939255)								
EP080: Benzene	71-43-2	1	μg/L	<1	20 μg/L	105	68.8	127
EP080: Toluene	108-88-3	2	μg/L	<2	20 μg/L	110	72.9	129
EP080: Ethylbenzene	100-41-4	2	μg/L	<2	20 μg/L	106	71.7	130
EP080: meta- & para-Xylene	108-38-3 106-42-3	2	μg/L	<2	40 μg/L	111	72.3	136
EP080: ortho-Xylene	95-47-6	2	μg/L	<2	20 μg/L	109	75.9	134
EP080: Naphthalene	91-20-3	5	μg/L	<5	5 μg/L	120	68.3	131

Page : 10 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Matrix Spike (MS) Report

The quality control term Matrix Spike (MS) refers to an intralaboratory split sample spiked with a representative set of target analytes. The purpose of this QC parameter is to monitor potential matrix effects on analyte recoveries. Static Recovery Limits as per laboratory Data Quality Objectives (DQOs). Ideal recovery ranges stated may be waived in the event of sample matrix interference.

Sub-Matrix: SOIL				M	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
aboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG005(ED093)T: T	otal Metals by ICP-AES (QCLot: 4935717)						
EM2304346-077	Anonymous	EG005T: Arsenic	7440-38-2	50 mg/kg	102	78.0	124
		EG005T: Cadmium	7440-43-9	50 mg/kg	94.2	79.7	116
		EG005T: Chromium	7440-47-3	50 mg/kg	106	79.0	121
		EG005T: Copper	7440-50-8	250 mg/kg	100	80.0	120
		EG005T: Lead	7439-92-1	250 mg/kg	92.1	80.0	120
		EG005T: Nickel	7440-02-0	50 mg/kg	108	78.0	120
		EG005T: Zinc	7440-66-6	250 mg/kg	85.4	80.0	120
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 4935718	3)					
EM2304346-077	Anonymous	EG035T: Mercury	7439-97-6	0.5 mg/kg	96.0	76.0	116
EP075(SIM)B: Poly	nuclear Aromatic Hydrocarbons (QCLot: 49	34867)					
EM2304498-060	Anonymous	EP075(SIM): Acenaphthene	83-32-9	3 mg/kg	93.3	77.2	116
	,	EP075(SIM): Pyrene	129-00-0	3 mg/kg	104	65.5	136
EP080/071: Total F	etroleum Hydrocarbons (QCLot: 4932664)						
EM2304346-005	Anonymous	EP080: C6 - C9 Fraction		28 mg/kg	69.5	33.4	124
FP080/071: Total F	etroleum Hydrocarbons (QCLot: 4934865)	E1 666. 66 66 1 1 1 1 1 1 1 1 1 1 1 1 1 1		3 3			
EM2304346-068	Anonymous	EP071: C10 - C14 Fraction		770 mg/kg	96.1	71.2	125
	, alonymous	EP071: C15 - C28 Fraction		2860 mg/kg	87.6	75.6	122
		EP071: C29 - C36 Fraction		1540 mg/kg	89.7	78.0	120
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Frac			i i i i i i i i i i i i i i i i i i i			
EM2304346-005	Anonymous	EP080: C6 - C10 Fraction	C6_C10	33 mg/kg	66.8	30.8	120
			00_010	55 Hig/kg	00.0	30.0	120
	Recoverable Hydrocarbons - NEPM 2013 Frac			4.470	04.0	70.0	400
EM2304346-068	Anonymous	EP071: >C10 - C16 Fraction		1170 mg/kg	84.9	72.2	128
		EP071: >C16 - C34 Fraction		3830 mg/kg	88.4	76.5	119
		EP071: >C34 - C40 Fraction		290 mg/kg	82.6	66.8	138
EP080: BTEXN (Q	CLot: 4932664)						
EM2304346-005	Anonymous	EP080: Benzene	71-43-2	2 mg/kg	88.0	54.4	127
		EP080: Toluene	108-88-3	2 mg/kg	90.6	57.1	131
Sub-Matrix: WATER				M	latrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	Higl
EG020T: Total Met	als by ICP-MS (QCLot: 4944730)						
EM2304478-001	Anonymous	EG020A-T: Arsenic	7440-38-2	1 mg/L	99.2	82.0	123
		EG020A-T: Cadmium	7440-43-9	0.25 mg/L	101	81.8	123

Page : 11 of 11 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Sub-Matrix: WATER				Ma	atrix Spike (MS) Report		
				Spike	SpikeRecovery(%)	Acceptable	Limits (%)
Laboratory sample ID	Sample ID	Method: Compound	CAS Number	Concentration	MS	Low	High
EG020T: Total Met	tals by ICP-MS (QCLot: 4944730) - continued						
EM2304478-001	Anonymous	EG020A-T: Chromium	7440-47-3	1 mg/L	102	78.9	119
		EG020A-T: Copper	7440-50-8	1 mg/L	102	80.4	118
		EG020A-T: Lead	7439-92-1	1 mg/L	103	80.5	121
		EG020A-T: Nickel	7440-02-0	1 mg/L	99.9	80.0	118
		EG020A-T: Zinc	7440-66-6	1 mg/L	99.0	74.0	120
EG035T: Total Re	coverable Mercury by FIMS (QCLot: 4942177)						
EM2304225-030	Anonymous	EG035T: Mercury	7439-97-6	0.01 mg/L	116	70.0	130
EK040P: Fluoride	by PC Titrator (QCLot: 4937055)						
EM2304486-005	Anonymous	EK040P: Fluoride	16984-48-8	5 mg/L	98.5	70.0	130
EP080/071: Total F	Petroleum Hydrocarbons (QCLot: 4939255)						
EM2304702-001	Anonymous	EP080: C6 - C9 Fraction		280 μg/L	87.4	33.9	126
EP080/071: Total F	Recoverable Hydrocarbons - NEPM 2013 Fractions (QC	Lot: 4939255)					
EM2304702-001	Anonymous	EP080: C6 - C10 Fraction	C6_C10	330 µg/L	83.6	34.0	122
EP080: BTEXN (Q	CLot: 4939255)						
EM2304702-001	Anonymous	EP080: Benzene	71-43-2	20 μg/L	109	56.3	133
		EP080: Toluene	108-88-3	20 μg/L	107	60.4	132

QA/QC Compliance Assessment to assist with Quality Review

Work Order : **EM2304527** Page : 1 of 10

Client : TETRA TECH COFFEY PTY LTD Laboratory : Environmental Division Melbourne

 Contact
 : JAMIE RODDEN
 Telephone
 : +6138549 9609

 Project
 : 754-MELEN215878
 Date Samples Received
 : 15-Mar-2023

 Site
 :
 Issue Date
 : 23-Mar-2023

Sampler : JAMIE RODDEN No. of samples received : 5

Order number : --- No. of samples analysed : 5

This report is automatically generated by the ALS LIMS through interpretation of the ALS Quality Control Report and several Quality Assurance parameters measured by ALS. This automated reporting highlights any non-conformances, facilitates faster and more accurate data validation and is designed to assist internal expert and external Auditor review. Many components of this report contribute to the overall DQO assessment and reporting for guideline compliance.

Brief method summaries and references are also provided to assist in traceability.

Summary of Outliers

Outliers: Quality Control Samples

This report highlights outliers flagged in the Quality Control (QC) Report.

- NO Method Blank value outliers occur.
- NO Duplicate outliers occur.
- NO Laboratory Control outliers occur.
- NO Matrix Spike outliers occur.
- For all regular sample matrices, NO surrogate recovery outliers occur.

Outliers: Analysis Holding Time Compliance

• Analysis Holding Time Outliers exist - please see following pages for full details.

Outliers : Frequency of Quality Control Samples

Quality Control Sample Frequency Outliers exist - please see following pages for full details.

Page : 2 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Outliers: Analysis Holding Time Compliance

Matrix: WATER

Outliers: Frequency of Quality Control Samples

Matrix: WATER

Matrix: WATER					
Quality Control Sample Type	Co	Count		e (%)	Quality Control Specification
Method	QC	Regular	Actual	Expected	
Laboratory Duplicates (DUP)					
PAH/Phenols (GC/MS - SIM)	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	1	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	9	0.00	10.00	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)					
PAH/Phenols (GC/MS - SIM)	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	0	1	0.00	5.00	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	0	9	0.00	5.00	NEPM 2013 B3 & ALS QC Standard

Page : 3 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Analysis Holding Time Compliance

If samples are identified below as having been analysed or extracted outside of recommended holding times, this should be taken into consideration when interpreting results.

This report summarizes extraction / preparation and analysis times and compares each with ALS recommended holding times (referencing USEPA SW 846, APHA, AS and NEPM) based on the sample container provided. Dates reported represent first date of extraction or analysis and preclude subsequent dilutions and reruns. A listing of breaches (if any) is provided herein.

Holding time for leachate methods (e.g. TCLP) vary according to the analytes reported. Assessment compares the leach date with the shortest analyte holding time for the equivalent soil method. These are: organics 14 days, mercury 28 days & other metals 180 days. A recorded breach does not guarantee a breach for all non-volatile parameters.

Holding times for <u>VOC in soils</u> vary according to analytes of interest. Vinyl Chloride and Styrene holding time is 7 days; others 14 days. A recorded breach does not guarantee a breach for all VOC analytes and should be verified in case the reported breach is a false positive or Vinyl Chloride and Styrene are not key analytes of interest/concern.

Matrix: SOIL				Evaluation	: * = Holding time	breach ; ✓ = Withi	n nolaing un
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EA033-A: Actual Acidity							
Snap Lock Bag - frozen on receipt at ALS (EA033) QC06	08-Mar-2023	23-Mar-2023	07-Mar-2024	✓	23-Mar-2023	21-Jun-2023	✓
EA033-B: Potential Acidity							
Snap Lock Bag - frozen on receipt at ALS (EA033) QC06	08-Mar-2023	23-Mar-2023	07-Mar-2024	1	23-Mar-2023	21-Jun-2023	✓
EA033-C: Acid Neutralising Capacity							
Snap Lock Bag - frozen on receipt at ALS (EA033) QC06	08-Mar-2023	23-Mar-2023	07-Mar-2024	✓	23-Mar-2023	21-Jun-2023	✓
EA033-D: Retained Acidity							
Snap Lock Bag - frozen on receipt at ALS (EA033) QC06	08-Mar-2023	23-Mar-2023	07-Mar-2024	✓	23-Mar-2023	21-Jun-2023	✓
EA033-E: Acid Base Accounting							
Snap Lock Bag - frozen on receipt at ALS (EA033) QC06	08-Mar-2023	23-Mar-2023	07-Mar-2024	✓	23-Mar-2023	21-Jun-2023	✓
EA037: Ass Field Screening Analysis							
Snap Lock Bag - frozen on receipt at ALS (EA037) QC02, QC04	08-Mar-2023	20-Mar-2023	04-Sep-2023	✓	20-Mar-2023	04-Sep-2023	✓
EA055: Moisture Content (Dried @ 105-110°C)							
Soil Glass Jar - Unpreserved (EA055) QC08	08-Mar-2023				16-Mar-2023	22-Mar-2023	✓
EG005(ED093)T: Total Metals by ICP-AES							
Soil Glass Jar - Unpreserved (EG005T) QC08	08-Mar-2023	17-Mar-2023	04-Sep-2023	✓	17-Mar-2023	04-Sep-2023	✓
EG035T: Total Recoverable Mercury by FIMS							
soil Glass Jar - Unpreserved (EG035T) QC08	08-Mar-2023	17-Mar-2023	05-Apr-2023	✓	18-Mar-2023	05-Apr-2023	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Soil Glass Jar - Unpreserved (EP075(SIM)) QC08	08-Mar-2023	17-Mar-2023	22-Mar-2023	√	17-Mar-2023	26-Apr-2023	✓

Page : 4 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Matrix: SOIL				Evaluation	: × = Holding time	breach ; ✓ = Withi	in holding time.
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Soil Glass Jar - Unpreserved (EP080)				_			
QC08	08-Mar-2023	16-Mar-2023	22-Mar-2023	√	17-Mar-2023	22-Mar-2023	√
Soil Glass Jar - Unpreserved (EP071) QC08	08-Mar-2023	17-Mar-2023	22-Mar-2023	1	20-Mar-2023	26-Apr-2023	1
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							_
Soil Glass Jar - Unpreserved (EP080)							
QC08	08-Mar-2023	16-Mar-2023	22-Mar-2023	✓	17-Mar-2023	22-Mar-2023	✓
Soil Glass Jar - Unpreserved (EP071)							
QC08	08-Mar-2023	17-Mar-2023	22-Mar-2023	√	20-Mar-2023	26-Apr-2023	✓
EP080: BTEXN							
Soil Glass Jar - Unpreserved (EP080)	08-Mar-2023	16-Mar-2023	22-Mar-2023	1	17-Mar-2023	22-Mar-2023	1
QC08	00-IVIAI -2023	10-IVIAI -2023	22-IVIAI-2023	-	17-Wai-2023	22-IVIAI-2023	✓
Matrix: WATER				Evaluation	: × = Holding time	breach; ✓ = Withi	in holding time.
Method	Sample Date	Ex	traction / Preparation			Analysis	
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EG020T: Total Metals by ICP-MS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG020B-T)			04.0 0000	_		04.0 0000	
QC10	08-Mar-2023	22-Mar-2023	04-Sep-2023	√	22-Mar-2023	04-Sep-2023	√
EG035T: Total Recoverable Mercury by FIMS							
Clear Plastic Bottle - Nitric Acid; Unfiltered (EG035T)	08-Mar-2023				21-Mar-2023	05-Apr-2023	
QC10	00-IVIAI -2023				21-War-2023	03-Apr-2023	√
EK040P: Fluoride by PC Titrator					I	I	
Clear Plastic Bottle - Natural (EK040P) QC10	08-Mar-2023				20-Mar-2023	05-Apr-2023	1
	00 2020				20 2020	00 / Ip. 2020	V
EP066: Polychlorinated Biphenyls (PCB) Amber Glass Bottle - Unpreserved (EP066)					<u> </u>		
QC10	08-Mar-2023	16-Mar-2023	15-Mar-2023	×	17-Mar-2023	25-Apr-2023	✓
EP068A: Organochlorine Pesticides (OC)							·
Amber Glass Bottle - Unpreserved (EP068)							
QC10	08-Mar-2023	16-Mar-2023	15-Mar-2023	<u>*</u>	17-Mar-2023	25-Apr-2023	✓
EP075(SIM)A: Phenolic Compounds							
Amber Glass Bottle - Unpreserved (EP075(SIM))							
QC10	08-Mar-2023	16-Mar-2023	15-Mar-2023	*	17-Mar-2023	25-Apr-2023	✓
EP075(SIM)B: Polynuclear Aromatic Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP075(SIM))			45.44 0005			05.4 0055	
QC10	08-Mar-2023	16-Mar-2023	15-Mar-2023	<u>*</u>	17-Mar-2023	25-Apr-2023	✓

Page : 5 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Matrix: WATER				Evaluation	: x = Holding time	breach ; ✓ = Withi	n holding time
Method	Sample Date	Ex	traction / Preparation				
Container / Client Sample ID(s)		Date extracted	Due for extraction	Evaluation	Date analysed	Due for analysis	Evaluation
EP080/071: Total Petroleum Hydrocarbons							
Amber Glass Bottle - Unpreserved (EP071) QC10	08-Mar-2023	16-Mar-2023	15-Mar-2023	<u>se</u>	16-Mar-2023	25-Apr-2023	✓
Clear glass VOC vial - HCl (EP080) QC10	08-Mar-2023	20-Mar-2023	22-Mar-2023	✓	21-Mar-2023	22-Mar-2023	✓
EP080/071: Total Recoverable Hydrocarbons - NEPM 2013 Fractions							
Amber Glass Bottle - Unpreserved (EP071) QC10	08-Mar-2023	16-Mar-2023	15-Mar-2023	غد	16-Mar-2023	25-Apr-2023	✓
Clear glass VOC vial - HCI (EP080) QC10	08-Mar-2023	20-Mar-2023	22-Mar-2023	✓	21-Mar-2023	22-Mar-2023	√
EP080: BTEXN							
Clear glass VOC vial - HCl (EP080) QC10	08-Mar-2023	20-Mar-2023	22-Mar-2023	✓	21-Mar-2023	22-Mar-2023	✓

Page : 6 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Quality Control Parameter Frequency Compliance

The following report summarises the frequency of laboratory QC samples analysed within the analytical lot(s) in which the submitted sample(s) was(were) processed. Actual rate should be greater than or equal to the expected rate. A listing of breaches is provided in the Summary of Outliers.

Matrix: SOIL				Evaluatio	n: × = Quality Co	ontrol frequency	not within specification; ✓ = Quality Control frequency within specification
Quality Control Sample Type		Co	ount		Rate (%)		Quality Control Specification
Analytical Methods	Method	OC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP)							
ASS Field Screening Analysis	EA037	2	12	16.67	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Chromium Suite for Acid Sulphate Soils	EA033	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Moisture Content	EA055	2	11	18.18	10.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	17	11.76	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Chromium Suite for Acid Sulphate Soils	EA033	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Chromium Suite for Acid Sulphate Soils	EA033	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
PAH/Phenols (SIM)	EP075(SIM)	1	4	25.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-AES	EG005T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	17	5.88	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix: WATER				Evaluatio	n: v = Quality Co	entrol frequency	not within specification : ✓ = Quality Control frequency within specification
Quality Control Sample Type			ount	Lvaidatio	Rate (%)		Quality Control Specification
Analytical Methods	Method	QC CC	Regular	Actual	Expected	Evaluation	Quality Control Specification
Laboratory Duplicates (DUP)		40	reduidi	Actual	ZADCCICO		
Fluoride by Auto Titrator	EK040P	2	20	10.00	10.00	√	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	1	0.00	10.00	*	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP075(SIW)	0	1	0.00	10.00	×	NEPM 2013 B3 & ALS QC Standard
1 COMOIGOU DY CONIO	EF000	<u> </u>	'	0.00	10.00	*	THE THE ED TO BO WITH CO GO OKAHAMIA

Page : 7 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Matrix: WATER				Evaluation	n: × = Quality Co	ntrol frequency	not within specification; ✓ = Quality Control frequency within specification.
Quality Control Sample Type		Co	unt		Rate (%)		Quality Control Specification
Analytical Methods	Method	QC	Regular	Actual	Expected	Evaluation	
Laboratory Duplicates (DUP) - Continued							
Polychlorinated Biphenyls (PCB)	EP066	0	1	0.00	10.00	3¢	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	2	20	10.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	1	1	100.00	10.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	10.00	x	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	2	15	13.33	10.00	✓	NEPM 2013 B3 & ALS QC Standard
Laboratory Control Samples (LCS)							
Fluoride by Auto Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Method Blanks (MB)							
Fluoride by Auto Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite B	EG020B-T	1	1	100.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	1	9	11.11	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Matrix Spikes (MS)							
Fluoride by Auto Titrator	EK040P	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	0	1	0.00	5.00	æ	NEPM 2013 B3 & ALS QC Standard
Pesticides by GCMS	EP068	0	1	0.00	5.00	se	NEPM 2013 B3 & ALS QC Standard
Polychlorinated Biphenyls (PCB)	EP066	0	1	0.00	5.00	sc	NEPM 2013 B3 & ALS QC Standard
Total Mercury by FIMS	EG035T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
Total Metals by ICP-MS - Suite A	EG020A-T	1	20	5.00	5.00	✓	NEPM 2013 B3 & ALS QC Standard
TRH - Semivolatile Fraction	EP071	0	9	0.00	5.00	sc	NEPM 2013 B3 & ALS QC Standard
TRH Volatiles/BTEX	EP080	1	15	6.67	5.00	✓	NEPM 2013 B3 & ALS QC Standard

Page : 8 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Project : 754-MELEN215878

Brief Method Summaries

The analytical procedures used by the Environmental Division have been developed from established internationally recognized procedures such as those published by the US EPA, APHA, AS and NEPM. In house developed procedures are employed in the absence of documented standards or by client request. The following report provides brief descriptions of the analytical procedures employed for results reported in the Certificate of Analysis. Sources from which ALS methods have been developed are provided within the Method Descriptions.

Analytical Methods	Method	Matrix	Method Descriptions
Chromium Suite for Acid Sulphate Soils	EA033	SOIL	In house: Referenced to Ahern et al 2004. This method covers the determination of Chromium Reducible Sulfur (SCR); pHKCl; titratable actual acidity (TAA); acid neutralising capacity by back titration (ANC); and net acid soluble sulfur (SNAS) which incorporates peroxide sulfur. It applies to soils and sediments (including sands) derived from coastal regions. Liming Rate is based on results for samples as submitted and incorporates a minimum safety factor of 1.5.
ASS Field Screening Analysis	* EA037	SOIL	In house: Referenced to Acid Sulfate Soils Laboratory Methods Guidelines. As received samples are tested for pH field and pH fox and assessed for a reaction rating.
Moisture Content	EA055	SOIL	In house: A gravimetric procedure based on weight loss over a 12 hour drying period at 105-110 degrees C. This method is compliant with NEPM Schedule B(3).
Total Metals by ICP-AES	EG005T	SOIL	In house: Referenced to APHA 3120; USEPA SW 846 - 6010. Metals are determined following an appropriate acid digestion of the soil. The ICPAES technique ionises samples in a plasma, emitting a characteristic spectrum based on metals present. Intensities at selected wavelengths are compared against those of matrix matched standards. This method is compliant with NEPM Schedule B(3)
Total Mercury by FIMS	EG035T	SOIL	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2) (Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. Mercury in solids are determined following an appropriate acid digestion. Ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	SOIL	In house: Referenced to USEPA SW 846 - 8015 Sample extracts are analysed by Capillary GC/FID and quantified against alkane standards over the range C10 - C40. Compliant with NEPM Schedule B(3).
PAH/Phenols (SIM)	EP075(SIM)	SOIL	In house: Referenced to USEPA SW 846 - 8270. Extracts are analysed by Capillary GC/MS in Selective Ion Mode (SIM) and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	SOIL	In house: Referenced to USEPA SW 846 - 8260. Extracts are analysed by Purge and Trap, Capillary GC/MS. Quantification is by comparison against an established 5 point calibration curve. Compliant with NEPM Schedule B(3) amended.
Total Metals by ICP-MS - Suite A	EG020A-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.
Total Metals by ICP-MS - Suite B	EG020B-T	WATER	In house: Referenced to APHA 3125; USEPA SW846 - 6020, ALS QWI-EN/EG020. The ICPMS technique utilizes a highly efficient argon plasma to ionize selected elements. Ions are then passed into a high vacuum mass spectrometer, which separates the analytes based on their distinct mass to charge ratios prior to their measurement by a discrete dynode ion detector.

Page : 9 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Analytical Methods	Method	Matrix	Method Descriptions
Total Mercury by FIMS	EG035T	WATER	In house: Referenced to APHA 3112 Hg - B (Flow-injection (SnCl2)(Cold Vapour generation) AAS) FIM-AAS is an automated flameless atomic absorption technique. A bromate/bromide reagent is used to oxidise any organic mercury compounds in the unfiltered sample. The ionic mercury is reduced online to atomic mercury vapour by SnCl2 which is then purged into a heated quartz cell. Quantification is by comparing absorbance against a calibration curve. This method is compliant with NEPM Schedule B(3).
Fluoride by Auto Titrator	EK040P	WATER	In house: Referenced to APHA 4500-F C: CDTA is added to the sample to provide a uniform ionic strength background, adjust pH, and break up complexes. Fluoride concentration is determined by either manual or automatic ISE measurement. This method is compliant with NEPM Schedule B(3)
Polychlorinated Biphenyls (PCB)	EP066	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
Pesticides by GCMS	EP068	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH - Semivolatile Fraction	EP071	WATER	In house: Referenced to USEPA SW 846 - 8015 The sample extract is analysed by Capillary GC/FID and quantification is by comparison against an established 5 point calibration curve of n-Alkane standards. This method is compliant with the QC requirements of NEPM Schedule B(3)
PAH/Phenols (GC/MS - SIM)	EP075(SIM)	WATER	In house: Referenced to USEPA SW 846 - 8270 Sample extracts are analysed by Capillary GC/MS in SIM Mode and quantification is by comparison against an established 5 point calibration curve. This method is compliant with NEPM Schedule B(3)
TRH Volatiles/BTEX	EP080	WATER	In house: Referenced to USEPA SW 846 - 8260 Water samples are directly purged prior to analysis by Capillary GC/MS and quantification is by comparison against an established 5 point calibration curve. Alternatively, a sample is equilibrated in a headspace vial and a portion of the headspace determined by GCMS analysis. This method is compliant with the QC requirements of NEPM Schedule B(3)
Preparation Methods	Method	Matrix	Method Descriptions
Drying only	EN020D	SOIL	In house
Drying at 85 degrees, bagging and labelling (ASS)	EN020PR	SOIL	In house
Hot Block Digest for metals in soils sediments and sludges	EN69	SOIL	In house: Referenced to USEPA 200.2. Hot Block Acid Digestion 1.0g of sample is heated with Nitric and Hydrochloric acids, then cooled. Peroxide is added and samples heated and cooled again before being filtered and bulked to volume for analysis. Digest is appropriate for determination of selected metals in sludge, sediments, and soils. This method is compliant with NEPM Schedule B(3).
Methanolic Extraction of Soils for Purge and Trap	ORG16	SOIL	In house: Referenced to USEPA SW 846 - 5030A. 5g of solid is shaken with surrogate and 10mL methanol prior to analysis by Purge and Trap - GC/MS.
Tumbler Extraction of Solids	ORG17	SOIL	In house: Mechanical agitation (tumbler). 10g of sample, Na2SO4 and surrogate are extracted with 30mL 1:1 DCM/Acetone by end over end tumble. The solvent is decanted, dehydrated and concentrated (by KD) to the desired volume for analysis.
Digestion for Total Recoverable Metals	EN25	WATER	In house: Referenced to USEPA SW846-3005. Method 3005 is a Nitric/Hydrochloric acid digestion procedure used to prepare surface and ground water samples for analysis by ICPAES or ICPMS. This method is compliant with NEPM Schedule B(3)

Page : 10 of 10 Work Order : EM2304527

Client : TETRA TECH COFFEY PTY LTD

Preparation Methods	Method	Matrix	Method Descriptions
Separatory Funnel Extraction of Liquids	ORG14	WATER	In house: Referenced to USEPA SW 846 - 3510 100 mL to 1L of sample is transferred to a separatory funnel
			and serially extracted three times using DCM for each extract. The resultant extracts are combined, dehydrated
			and concentrated for analysis. This method is compliant with NEPM Schedule B(3) . ALS default excludes
			sediment which may be resident in the container.
Volatiles Water Preparation	ORG16-W	WATER	A 5 mL aliquot or 5 mL of a diluted sample is added to a 40 mL VOC vial for purging.

	ETDA TECLI		Consigning Of	fice:	Newtown										/	//			
	ETRA TECH		Report Results to: Jamie Rodden Mobile:						0408651268						Email: jamie.rodden@tetratech.c				
	OFFET				Bryden 1	Tiddy					04094	00219				br	den.tiddy@tetratech.com		
				- 10	Ed Grir	nter										/	ed.grinter@tetratech.cor		
			Invoices to:		Lisa Marnell		Phor	ie:				9406 1	.000	Ema	il:				
Project No:	754-MELEN215878	Task No:										Analysis Request S				ection			
Project Name:	Marinus Link - Heybridge	Laboratory:	Eurofins, ALS								П		T		П		NOTES		
Sampler's Name	: Jamie Rodden	Project Manager	:		Bryden Tiddy				>	Screen						1	NOTES		
Quote number (i	if different to current quoted prices):								/ PAH/	t Scr	×								
pecial Instruction	ons: Please forwar	d samples QC02, QC0	4, QC06 and QC	08 to ALS. Plea	se relabel HEY_SW3 to	HEYSW1	a	d Test	B7: TRH/ BTEXN/ Metals (8 inc Hg)	Vic EPA Short : EPA Acreen)	TRH C6-C10+BTEX								
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	CrS Suite ASS field Test	B7: TRH Metals (R6: Vic El (Tas EPA	TRH C6-		НОГР							
	HEY7_0.0-0.2	8.3.2023	AM	S	1Z	Standard		Х									E _{rg}		
	HEY7_0.5-0.6	8.3.2023	AM	S	1Z	Standard		Х											
	QC01	8.3.2023	AM	S	1Z	Standard		X											
L	QC02	8.3.2023	AM	S	1Z	Standard		Х									Please forward to ALS		
	HEY7_0.9-1.0	8.3.2023	AM	S	1Z	Standard		Х									*		
	HEY7_1.4-1.5	8.3.2023	AM	S	1Z	Standard	Х		1										
	HEY8_0.0-0.3	8.3.2023	AM	S	1Z	Standard		X	- 57										
	HEY8_0.4-0.5	8.3.2023	AM	S	1Z	Standard		X											
	HYE8_0.6-0.7	8.3.2023	AM	S	1Z	Standard		Х											
	HEY8_0.9-1.0	8.3.2023	AM	S	1Z	Standard		Х											
	HEY8_1.3-1.4	8.3.2023	AM	S	1Z	Standard	X												
	HEY6_0.1-0.3	8.3.2023	AM	S	1Z	Standard		Х											
	QC03	8.3.2023	AM	S	1Z	Standard		X											
2	QC04 HEY6_0.4-0.5	8.3.2023	AM	S	1Z 1Z	Standard		X								\perp	Please forward to ALS		

Standard

Standard

relinguished by: Enilyo 15/03/23 8:00am Environmental Division
Melbourne
Work Order Reference
EM2304527

Telephone: +61-3-8549 9600

Received by: Richard Boez 15/03/23 - 11:40 om

1Z

1Z, 1J

Chain of custody Issued: 5 April 2022 UNCONTROLLED WHEN PRINTED

HEY6_0.9-1.0

HEY6_1.4-1.5

8.3.2023

8.3.2023

AM

AM

				CHAIN-	OF-CUSTOD	Y AND ANA	LYS	IS REQ	UES	ST						Page of _
	HEY5_0.0-0.2	8.3.2023	PM	S	1Z	Standard		X					П			(5)
	HEY5_0.4-0.5	8.3.2023	PM	S	1Z	Standard		X					+	1	7	(7)
	HEY5_0.9-1.0	8.3.2023	PM	S	1Z	Standard		X			\Box			11	1	
	HEY5_1.4-1.5	8.3.2023	PM	S	1Z	Standard		X					+		(0	1000
	HEY4_0.0-0.2	8.3.2023	PM	S	1Z	Standard		X					\dagger	11		47
	HEY4_0.4-0.5	8.3.2023	PM	S	1Z	Standard		X					\vdash	\top		4
	HEY4_0.9-1.0	8.3.2023	PM	S	1Z, 1J	Standard	Х		-			1		+	_	
	HEY4_1.4-1.5	8.3.2023	PM	S	1Z	Standard	Х						T	11	1	
	HEY3_0.0-0.2	8.3.2023	PM	S	1Z	Standard		X	- 4							
	HEY3_0.4-0.5 *	8.3.2023	PM	S	1Z	Standard	Х									
	HEY3_0.9-1.0	8.3.2023	PM	S	1Z	Standard	Х									
	HEY3_1.4-1.5	8.3.2023	PM	S	1Z	Standard	Х									
	QC05	8.3.2023	PM	S	1Z	Standard	Х									
3	QC06	8.3.2023	PM	S	1Z	Standard	Х									Please forward to ALS
	HEY2_0.0-0.2	8.3.2023	PM	S	1Z	Standard		Х								
	HEY2_0.4-0.5	8.3.2023	PM	S	1Z	Standard		Х								
	HEY2_1.4-1.5	8.3.2023	PM	S	1Z	Standard	X									
	HEY1_0.0-0.2	8.3.2023	PM	S	1Z	Standard		X								
	HE¥1_0.4-0.5	8.3.2023	PM	S	1 Z	Standard		X								
	HEY1_0.9-1.0	8.3.2023	PM	S	1 Z	Standard	X									
	HEY1_1.4-1.5	8.3.2023	PM	S	1 Z	Standard	X									
	HEY_SW2	8.3.2023	PM	W	3p, 1a, 4v	Standard				X						
	HEY_SW3	8.3.2023	PM	W	3p, 1a, 4v	Standard				X						Please relabel as HEY_SW1
	QC09	8.3.2023	PM	W	3p, 1a, 4v	Standard				X						
tely	QC10	8.3.2023	PM	W	3p, 1a, 4v	Standard				Х						Please forward to ALS
	RB01	8.3.2023	PM	W	3p, 1a, 2v	Standard				x						
	TB01	8.3.2023	PM	W	2v	Standard					X					
	SP2_01	8.3.2023	PM	S	1 J	Standard				X						
	SP2_02	8.3.2023	PM	S	1 J	Standard		×								
	SP2_03	8.3.2023	PM	S	1 J	Standard		x								

Received by: Kichard Boez 15/03/23- 12:40 on

relinquished by: Entity D 15/03/23 8=00an

Chain of custody Issued: 5 April 2022 UNCONTROLLED WHEN PRINTED

			C	LIMIN-	01-003100	I AND ANALIO	O INEGO	-01							1			
												-						
	SP3_01	8.3.2023	PM	S	1 J	Standard	X		\perp	+	+	-	+		5			
	SP8_01	8.3.2023	PM	S	1 J	Standard	Х			11	+	_	\perp					
	SP8_02	8.3.2023	PM	S	1 J	Standard	x			11	1	7						
	SP9_01	8.3.2023	PM	S	1 J	Standard		X				4/	(n)					
	SP9_02	8.3.2023	PM	S	1J	Standard	X					-1	4	10) 17				
	SP9_03	8.3.2023	PM	S	1J	Standard	X						1	1 //				
	SP9_04	8.3.2023	PM	S	1J	Standard	×							4				
	SP5_01	8.3.2023	PM	S	1J	Standard		X										
	SP5_02	8.3.2023	PM	S	1J	Standard	x											
	SP5_03	8.3.2023	PM	S	1J	Standard	×											
	SP10_01	8.3.2023	PM	S	1J	Standard		X										
	SP10_02	8.3.2023	PM	S	1J	Standard	x											
	SP10_03	8.3.2023	PM	S	1J	Standard	x											
	QC07	8.3.2023	PM	S	1J	Standard	x											
	QC08	8.3.2023	PM	S	1J	Standard	x							Please f	orward to	ALS		
	t																	
	RELINQUISHED	ву		RECEIVED BY							Sample Receipt Advice: (Lab Use Only)							
Name:	Di		Name: Date:								All Samples Recieved in Good Condition							
Coffey					Company: Time:								All Documentation is in Proper Order					
Name:	Di	→	Name: Date:								Samples Received Properly Chilled							
Company:	Ti	ime:		Company: Time:							Ref/B	atch No	٥.					
*Container Type	& Preservation Codes: P - Plastic, G-	Glass Bottle, J - Glass	Jar, V - Vial, Z - Zi	plock bag,	N - Nitric Acid Preserv	ved, C - Hydrochloric Acid Pr	eserved, S - Sul	phuric Acid Prese	erved, I - Ice,	ST								
	ate. NP - No Preservative														50			

CHAIN OF CUSTODY AND ANALYSIS DECLIEST

Count

Price Per test

Received by: Richard Baez- ALS 15/03/23- 11:40 relinquished by: Enaly 9 15/03/23 8:00 am

Jamie Rodden

Newtown

R6: Vic EPA Short Screen (Tas EPA Acreen)

TRH C6-C10+BTEX

HOLD

BTEXN/ PAH/

jamie rode mo tetratech.com 0408651268 Email:

> bryden.tiddy@tetratech.com ed.grinter@tetratech.com

> > NOTES

Please forward to ALS

Bryden Tiddy 0409400219 Ed Grinter Lisa Marnell Invoices to: Phone: 9406 1000 Fmail: **Analysis Request Section**

Mobile:

Project Name: Marinus Link - Heybridge Laboratory: Eurofins, ALS Sampler's Name: Jamie Rodden Project Manager: Bryden Tiddy Quote number (if different to current quoted prices):

Special Instructions: Please forward samples QC02, QC04, QC06 and QC08 to ALS. Please relabel HEY SW3 to HEYSW1

Task No:

8.3.2023

TETRA TECH

754-MFI FN215878

Project No:

Special Instructi	ons: Please for	ward samples QC02, QC0	04, QC06 and Q	CO8 to ALS. Plea	se relabel HEY_SW3 to	HEYSW1		l Test	4/ BTEXN/ (8 inc Hg)
Lab Batch Ref	Sample ID	Sample Date	Time	Matrix (Soiletc)	Container Type & Preservative*	T-A-T (specify)	CrS Suite	ASS field Test	B7: TRH/ Metals (8
	HEY7_0.0-0.2	8.3.2023	AM	S	1Z	Standard	1	Х	
	HEY7_0.5-0.6	8.3.2023	AM	S	1Z	Standard		X	
	QC01	8.3.2023	AM	S	1Z	Standard		Х	
1	QC02	8.3.2023	AM	S	1Z	Standard		Х	
	HEY7_0.9-1.0	8.3.2023	AM	S	1 Z	Standard		X	
	HEY7_1.4-1.5	8.3.2023	AM	S	1Z	Standard	Х		1
	HEY8_0.0-0.3	8.3.2023	AM	S	1Z	Standard		Х	29
	HEY8_0.4-0.5	8.3.2023	AM	S	1Z	Standard		Х	
	HYE8_0.6-0.7	8.3.2023	AM	S	1Z	Standard		X	
	HEY8_0.9-1.0	8.3.2023	AM	S	1Z	Standard		X	
	HEY8_1.3-1.4	8.3.2023	AM	S	1Z	Standard	Х		
	HEY6_0.1-0.3	8.3.2023	AM	S	1Z	Standard		X	
	QC03	8.3.2023	AM	S	1Z	Standard		X	
2	QC04	8.3.2023	AM	S	1Z	Standard		X	
14	HEY6_0.4-0.5	8.3.2023	AM	S	1Z	Standard		X	
	HEY6 0.9-1.0	8.3.2023	AM	S	1Z	Standard		X	

Consigning Office:

Report Results to:

relinguished by: Emilyo 15/03/23 8:0000

Environmental Division Melbourne Work Order Reference EM2304527

Please forward to ALS

Telephone: +61-3-8549 9600

Received by: Richard Boez 15/03/23 - 11:40 om

1Z. 1J

Standard

HEY6 1.4-1.5

				OI II aire	01-0001001	7.1.12 7.1.7.1.		011240							
	HEY5_0.0-0.2	8.3.2023	PM	S	1Z	Standard		Х	T				TT	T	石
	HEY5_0.4-0.5	8.3.2023	PM	S	1Z	Standard		X					1	7	
	HEY5_0.9-1.0	8.3.2023	PM	S	1Z	Standard		X					1(0	
	HEY5_1.4-1.5	8.3.2023	PM	S	1Z	Standard		X	1			11	-	(0)	10) 172
	HEY4_0.0-0.2	8.3.2023	PM	S	1Z	Standard		X							4/
	HEY4_0.4-0.5	8.3.2023	PM	S	1Z	Standard		X	-			+		11	U
	HEY4_0.9-1.0	8.3.2023	PM	S	1Z, 1J	Standard	Х								
	HEY4_1.4-1.5	8.3.2023	PM	S	1Z, 13	Standard	X							11	
	HEY3 0.0-0.2	8.3.2023	PM	S	1Z	Standard		X						11	
	HEY3_0.4-0.5 '	8.3.2023	PM	S	1Z	Standard	Х				\Box	\top	+	11	
	HEY3_0.9-1.0	8.3.2023	PM	S	1Z	Standard	X		_						
	HEY3_1.4-1.5	8.3.2023	PM	S	1Z	Standard	X		_			\Box			
	QC05	8.3.2023	PM	S	1Z	Standard	X								
3	QC06	8.3.2023	PM	S	1Z	Standard	X					\top			Please forward to ALS
	HEY2_0.0-0.2	8.3.2023	PM	S	1Z	Standard		Х							
	HEY2_0.4-0.5	8.3.2023	PM	S	1Z	Standard		X						\top	
-	HEY2_1.4-1.5	8.3.2023	PM	S	1Z	Standard	X		1						
	HEY1_0.0-0.2	8.3.2023	PM	S	1Z	Standard		X							
	HE¥1_0.4-0.5	8.3.2023	PM	S	1Z	Standard		X							
	HEY1_0.9-1.0	8.3.2023	PM	S	1Z	Standard	Х								
	HEY1_1.4-1.5	8.3.2023	PM	S	1Z	Standard	Х								
	HEY_SW2	8.3.2023	PM	W	3p, 1a, 4v	Standard			X						
	HEY_SW3	8.3.2023	PM	W	3p, 1a, 4v	Standard			X						Please relabel as HEY_SW
	QC09	8.3.2023	PM	W	3p, 1a, 4v	Standard		100	. X						
5 4	QC10	8.3.2023	PM	W	3p, 1a, 4v	Standard			X		044				Please forward to ALS
) 1	RB01	8.3.2023	PM	W	3p, 1a, 2v	Standard			x						
	TB01	8.3.2023	PM	W	2v	Standard				Х					
	SP2_01	8.3.2023	PM	S	1J	Standard			X						
	SP2_02	8.3.2023	PM	S	1J	Standard		×							
	SP2_03	8.3.2023	PM	S	1 J	Standard		x							

Received by: Kichard Boez 15/03/23- 12:40 on relinquished by: Entity D 15/03/23 8=00an

Chain of custody Issued: 5 April 2022 UNCONTROLLED WHEN PRINTED

*Container Type	& Preservation Codes: P -	Time:	I - Glass lar	r V Vial 7 7in	Company:		Time: rved, C - Hydrochloric Acid Pres					Batch N		, cime	
Name:		Date:		>	Name:		Date:		***************************************					rly Chilled	
Coffey		Time:			Company:		Time:			- 1				Proper Order	
Name:		Date:			Name:		Date:			-				Good Condition	
	RELIN	QUISHED BY					RECEIVED BY				Sample	Receipt	Advice:	(Lab Use Only)	
											+	++			
										+	-	++	-		
70	C	0.5.2	2025	PM	S]	1J I	Standard	X			_			Please f	orward to ALS
	QC08			PM	S	1J	Standard	x							
	SP10_03 QC07			PM	S	1J	Standard	х							
	SP10_02			PM	S	1J	Standard	x							
	SP10_01		.2023	PM	S	1J	Standard		X						
	SP5_03			PM	S	1J	Standard	x							
	SP5_02			PM	S	1J	Standard	х							
	SP5_01		.2023	PM	S	1J	Standard		X						
	SP9_04	8.3.	.2023	PM	S	1J	Standard	x						4	
	SP9_03	8.3.	.2023	PM	S	1J	Standard	x						11/	~
	SP9_02	8.3.	.2023	PM	S	1J	Standard	x				7	(U)	10) 17-	
	SP9_01	8.3.	.2023	PM	S	1 J	Standard		x	+		10	(0)		
	SP8_02	8.3.	.2023	PM	S	1J	Standard	x		+			+	-	9
	SP8_01	8.3.	.2023	PM	S	1 J	Standard	x	+ + +	+		+	+		5
	SP3_01	8.3.	.2023	PM	S	1J	Standard	x				T	T		

Count

Price Per test

Received by: Richard Basz- ALS 15/03/23- 11:40 relinquished by: Enaly 9 15/03/23 &:000

APPENDIX G: QC DATA VALIDATION REPORT

DATA QUALITY ASSESSMENT REPORT

PROJECT REFERENCE: 754-MELEN215878ML

REPORT NUMBER: Heybridge_Tasmania_CSASS

LABORATORY REPORTS ASSESSED

Testing Laboratory	Report/Workorder Number
Eurofins Environment Testing	971775, 975268
Australian Laboratory Services	EM2304527

QUALITY CONTROL

1.1 INTRODUCTION

The steps in the sampling and analysis process are subject to natural and inherent variability, and this can affect the results produced, and the overall quality of the data sets generated. In order to minimise the effect of this, standard procedures are used for works carried out in the field, and in the laboratory. The use of such procedures represents one aspect of the quality assurance process. To measure the effectiveness of the quality assurance process, quality control samples can be tested, and other quality control tests can be conducted during the analysis of samples taken in the field.

Quality control (QC) samples and tests can be used to assess both the accuracy and the precision of the results produced.

Measures of ACCURACY provide information on how close to the true result is the reported result. For practical reasons, measures of accuracy are usually confined to the laboratory steps in the overall process.

Measures of PRECISION provide information on the variability in the results. Precision can be assessed as:

- "repeatability" or intra-laboratory variation the degree of variation in a result when the same laboratory analyses a sample (or blind replicate) several times, and;
- "reproducibility" or inter-laboratory variation the degree of variation in a result when a different laboratory separately analyses a sample.

In addition, blank samples can be used to assess whether extraneous materials and factors have contributed to the results obtained from the sampling and analysis process.

QC testing can be conducted covering all steps of the process (referred to as Field QC in this report), or just one portion of the process, such as the laboratory steps (referred to as Laboratory QC in this report).

1.2 FIELD QUALITY CONTROL

Precision of the sample collection, transport and analysis process is measured by the relative percent difference (RPD) between duplicate results. Acceptance targets for laboratory duplicates are dependent on matrix type, contaminant type and contaminant concentrations.

For groundwater samples, the acceptance targets for a range of contaminants are listed in Table 1-1.

Table 1-1: RPD Acceptance Targets for Contaminant / Analyte Classes

Contaminant/analyte classes	Acceptable RPD for concentrations more than <u>10 times</u> the LOR	Acceptable RPD for concentrations less than <u>10 times</u> the LOR
Organic and Inorganic compounds	30%	50%

For rinsate blanks and trip blanks, Tetra Tech Coffey's approach is that the concentration of any contaminant should be less than the LOR in all blank samples.

1.3 LABORATORY QUALITY CONTROL

Laboratories are accredited by the National Association of Testing Authorities, Australia (NATA) on the basis of their ability to provide quantitative evidence of their ability and competence to produce reliable results against recognised benchmarks NATA accredited laboratories are able to demonstrate the ability to produce reliable, repeatable results for a range of parameters within a range of sample matrices. Each laboratory

method used undergoes a validation process before it is adopted by the laboratory and accredited by NATA. As part of the validation process, the precision and accuracy of the method are established.

In addition, laboratories conduct their own quality control testing to indicate their performance on each reported batch of samples. The results of this testing are compared with the validated precision and accuracy.

Precision of results is measured by the Relative Percent Difference (RPD) between replicate samples selected within the laboratory. RPD is calculated in the same way as described above for Field QC.

Accuracy of results is assessed in a number of ways:

- **Reference materials**, with known concentrations of analytes are analysed with the batch of samples. The results of this analysis are compared with the established concentrations in the reference material.
- Spike additions. Known amounts of targeted analytes are added to the samples to be analysed, and the
 spiked samples are processed through the analytical process. The amount of spiked material is measured
 as the recovery of the added amount reported in the final result.
- Surrogate spikes. Known amounts of chemical compounds with similar properties to the targeted
 analytes are added to the samples to be analysed, and the spiked samples are processed through the
 analytical process. The amount of spiked material is measured as the recovery of the added amount
 reported in the final result.

Schedule B(3) of the National Environment Protection Measure (NEPM) for contaminated sites states that, in general, at least 70% recovery should be achievable from a reference method. Additionally, standard methods prepared by international agencies such as the US EPA and APHA, frequently have performance data such as expected spike recovery incorporated within the method. Where these vary from the 70% figure indicated in the NEPM Schedule, they are noted in the discussion of results which follows this introduction.

Based on the above, Tetra Tech Coffey has adopted 70% - 130% as the default acceptable range for spike recovery and surrogates spike recovery results, and as the default acceptance limits for the difference between analysis results and the expected result for reference materials.

FIELD SAMPLING PROGRAMME

2.1 PRECISION & ACCURACY

		YES	NO
1.	Was a NATA registered laboratory used?	\boxtimes	
2.	Did the laboratory perform the requested analysis?	\boxtimes	
3.	Were the laboratory methods adopted NATA endorsed?	\boxtimes	
4.	Were the appropriate test procedures followed?	\boxtimes	
5.	Were the reporting limits satisfactory?	\boxtimes	
6.	Was the NATA seal on the reports?	\boxtimes	
7.	Were the reports signed by an authorised person?	\boxtimes	

COMMENTS

Nil.

Precisi	Precision/Accuracy of the Laboratory Report								
Satisfactory	Partially Satisfactory	Unsatisfactory							
\boxtimes									

2.2 SAMPLE HANDLING PROCEDURES

	YES	NO	N/A
Were the sample holding times met?	see comment		
Were the samples in proper custody between the field and laboratory?	\boxtimes		
 Were the samples properly and adequately preserved? (This includes chilling the samples where appropriate) 	\boxtimes		
4. Were the samples received by the laboratory in good condition?			

Samples were frozen by TTC field staff following collection and refrigerated during transport to the laboratories to ensure holding times did not impact results.

	Sample Handling Procedure	
Satisfactory	Partially Satisfactory	Unsatisfactory

3. FIELD QA/QC SAMPLING AND PROCEDURES

3.1 FIELD QA/QC SUMMARY

This sampling event occurred on 8/03/2023 and a total of 57 samples were submitted for analysis including primary and QC samples, as summarised in Table C below.

Table C - QA/QC Sampling Summary

Matrix	Sample Type	Number of Samples	
Acid Sulfate Soils	Primary Samples	31	
Acid Sullate Solls	Field Duplicates (at least 1 in 20 samples)	2 pairs	
Soil (stockpiles)	Primary Samples	16	
Soli (stockpiles)	Field Duplicates (at least 1 in 20 samples)	1 pair	
Surface Water	Primary Samples	2	
Surface Water	Field Duplicates (at least 1 in 20 samples)	1 pair	
QAQC	Equipment Rinsates (at least 1/personnel/day)	1	
WAWC	Field Blanks (Trip Blank)	1	

3.2 FIELD REPLICATES

		YES	NO	N/A
1.	Were an adequate number of field replicates analysed for each chemical (min 10%)?	\boxtimes		
2.	Were RPD's for replicate samples within control limits?		\boxtimes	

Replicate sample result exceeding the adopted control limits are summarised below.

Table 3-1: Replicate RPD exceedance summary – ASS samples

Primary Sample	Replicate	Analyte	RPD Exceedar	nce (%)	Max Concentration	Explanation
	Replicate	Analyte	Eurofins	ALS	(mg/kg)	Code
HEY3_0.9-1.0	QC06	Chromium Reducible Sulfur	0	57	0.009	A

Table 3-2: Replicate RPD exceedance summary – soil stockpile samples

Primary	Replicate	Analyte	RPD Exceedance (%)		Max Concentration	Explanation
Sample			Eurofins	ALS	(mg/kg)	Code
		Chromium (III+VI)	64	21	120	С
		Copper	62	20	42	С
SP9_01	QC07	Mercury	67	0	0.2	Α
01 3_01		Nickel	64	32	78	С
		Zinc	51	20	120	С
	QC08	Nickel	64	32	78	С

Table 3-3: Replicate RPD exceedance summary – surface water samples

Primary	Replicate	olicate Analyte	RPD Exceedance (%)		Max Concentration	Explanation	
Sample	reprioato		Eurofins	ALS	(mg/kg)	Code	
HEY_SW1	QC09 & QC10	Lead	67	67	0.002	Α	

Explanation Code	Acceptance Condition	
А	When low analyte concentrations (<10x LOR) are reported in the primary and corresponding replicate sample, minor differences in reported concentration may be exaggerated in the calculated RPD. As such, the exceedance against adopted RPD criterion for this sample is not considered to indicate poor integrity of results.	
В	Where calculated replicate RPDs exceed the given criteria, a conservative approach of adopting the highest reported concentration for the given sample is taken. In this case the primary sample result is greater than the replicate sample results, and has therefore been retained	
С	Where calculated replicate RPDs exceed the given criteria, a conservative approach of adopting the highest reported concentration for the given sample is taken. In this case the secondary sample result is	

greater than the replicate sample results however both result are below the adopted criteria, therefore the
primary sample result has been retained

COMMENTS

Following a review of the RPD values against the primary analytical results the RPD exceedances are not considered to affect the validity of the results.

	Field Replicate Sampling & Analysis				
Satisfactory	Satisfactory Partially Satisfactory				
3.3 BLANKS AND RI	INSATES				
3.3.1 Trip Blanks					
		YES	NO	N/A	
Were an adequate nur	\boxtimes				
2. Were the trip blanks reported to be free of contaminants?					
3.3.2 Equipment Rir	nsates				
		YES	NO	N/A	
1. Were an adequate nur	mber of equipment rinsates collected?	\boxtimes			
2. Were the equipment ri	nsates reported to be free of contaminants?	\boxtimes			

Blanks and Rinsate Sampling and Analysis				
Satisfactory	Partially Satisfactory	Unsatisfactory		
\boxtimes				

Tetra Tech Coffey Data Quality Assessment Report Date: 9 December 2022

4. LABORATORY QUALITY CONTROL PROCEDURES

As noted in Section 1.3, laboratories conduct their own quality control testing to indicate their performance on each reported batch of samples. The following section assesses the adequacy of these procedures.

		YES	NO
1.	Were laboratory method blanks free of contamination?	\boxtimes	
2.	Were the spike recoveries within control limits?	\boxtimes	
3.	Were the RPD's of the laboratory duplicates within control limits?	\boxtimes	
4.	Were the surrogate recoveries within laboratory control limits?	\boxtimes	
5.	Did the laboratory meet quality control frequency objectives?	\boxtimes	

COMMENTS

Nil

Laboratory Internal QA/QC				
Satisfactory	Partially Satisfactory	Unsatisfactory		

5. DATA USABILITY

Based on a review of the available field and laboratory data with consideration of the quality control data quality objectives outlined in Section 1.2 and Section 1.3 of this assessment, the following is concluded.

1.	Data is directly usable	\boxtimes
2.	Data is usable with the following corrections/modifications detailed below.	
3.	Data is not considered to be suitable for use.	

Author:

NAME: Ed Grinter

POSITION: Senior Environmental Engineer

Thelate

Reviewer:

NAME: Bryden Tiddy

POSITION: Principal Environmental Scientist

Beyden Frelely